Review Paper Examen critique # Perinatal depression: treatment options and dilemmas # Teri Pearlstein, MD Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University and the Women's Behavioral Health Program, Women and Infants Hospital, Providence, RI The treatment of depression during pregnancy and the postpartum period raises unique concerns about safety for the developing fetus and the infant. An increasing number of studies suggest adverse effects from untreated stress, anxiety and depression as well as adverse effects from antidepressant and other psychotropic medications. Even when studies suggest a lack of short-term adverse effects with some medications, the paucity of systematic longitudinal follow-up studies investigating the development of children exposed to medications during pregnancy and breastfeeding causes apprehension. This review's objective is to highlight what is currently known about the negative effects of untreated disease and exposure to psychotropic medication, the treatment dilemmas confronting women with perinatal depression and issues that future studies should address so that a woman with perinatal depression can make an optimally informed decision. Le traitement de la dépression au cours de la grossesse et en période post-partum soulève des préoccupations particulières au sujet de la sécurité du fœtus en développement et du nouveau-né. De plus en plus d'études indiquent que le stress, l'anxiété et la dépression non traités ont des effets indésirables, tout comme les antidépresseurs et d'autres psychotropes. Même si des études indiquent que certains médicaments n'ont pas d'effet indésirable à court terme, la rareté des études de suivi longitudinales systématiques sur le développement des enfants exposés à des médicaments in utero et pendant l'allaitement demeure préoccupante. Cette revue vise à cerner les connaissances actuelles des effets négatifs du non-traitement des maladies et de l'exposition aux médicaments psychotropes, les dilemmes auxquels font face les femmes qui ont besoin de traitement pour une dépression périnatale et les questions sur lesquelles les études à venir devraient porter pour que ces femmes puissent prendre une décision éclairée. ## Introduction Women with depression face difficult decisions about treating or not treating their depressive symptoms with medication during pregnancy and while breastfeeding. There are risks to the fetus and infant with exposure to medication as well as with exposure to the underlying untreated disorder. Unfortunately, there are no risk-free options. The safety for the developing child of exposure to antidepressant medication during pregnancy and breastfeeding is an area of current research and great public health significance. This article reviews some of the recent studies and concerns about the potential negative effects of either not treating major depressive disorder (MDD) or of taking psychotropic medication during the perinatal period. # MDD in pregnancy Diagnosis and epidemiology The peak prevalence of MDD occurs in women during the reproductive years. Rates of MDD during pregnancy approximate the rates during the reproductive years, (i.e., pregnancy is neither protective nor exacerbating for depressive disorders). Perinatal depression is underrecognized and undertreated in obstetric-gynecological and primary care settings. Self-report measures that screen for depression can be used to identify pregnant women who may warrant further assessment for a depressive disorder. In addition, the Edinburgh Postnatal Depression Scale (EPDS), which was developed to identify postpartum depression (PPD), is also commonly Correspondence to: Dr. T. Pearlstein, Women and Infants Hospital, 101 Dudley St., Providence RI 02905; fax 401 453-7720; Teri_Pearlstein@brown.edu Medical subject headings: pregnancy; postpartum period; depression; breastfeeding; antidepressive agents. J Psychiatry Neurosci 2008;33(4):302-18. Submitted June 20, 2007; Revised Aug. 25, 2007; Accepted Sept. 5, 2007 © 2008 Canadian Medical Association used to identify depression during pregnancy. It has been suggested that an EPDS score of 15 or more identifies significant depression during pregnancy. The diagnosis of depression in pregnant women can be challenging because some of the diagnostic symptoms of depression overlap with symptoms of normal pregnancy (e.g., sleep or appetite change, fatigue, decreased libido). One systematic review reported prevalence rates of depression of 7.4% in the first trimester, 12.8% in the second trimester and 12.0% in the third trimester.8 Another systematic review reported an 11.0% point prevalence of major and minor depression in the first trimester that dropped to 8.5% in the second and third trimesters.9 Overall, the point prevalence of major and minor depression ranged from 6.5% to 12.9% through pregnancy, while the point prevalence of MDD ranged from 1.0% to 5.6%. The latter study only reviewed studies in which depression was evaluated by structured clinical interview, whereas the former study included studies in which depression was defined by either self-report measures or structured interview. Women with increased risk of elevated depressive symptoms or MDD during pregnancy are often adolescent, unmarried, financially disadvantaged, African-American or Hispanic and lacking in social support; often, they have had a previous depressive episode and recent negative life events.1 # Untreated depression and pregnancy outcome Depression, anxiety symptoms and maternal stress can lead to adverse effects in the fetus and offspring. Untreated depression can lead to harmful prenatal health behaviours such as poor nutrition, poor prenatal medical care, smoking, alcohol or other substance misuse and risk of suicide, each of which compromises the health of both the woman and her fetus.^{10,11} Untreated depression during pregnancy increases the risk for PPD, which has known negative effects on maternal-infant attachment and child development. In a pregnant woman with depression, the fetus can demonstrate abnormal neurobehavioural responses such as altered heart rate reactivity.12 Reviews have summarized the numerous adverse obstetric complications reported with untreated prenatal stress and depression. 13-16 These complications include preeclampsia, preterm delivery, low birth weight, miscarriage, smallfor-gestational-age babies, low Apgar scores, neonatal complications and high neonatal cortisol levels at birth.¹³ However, recent studies have suggested that, with adjustment for potential confounding prenatal variables, untreated depressive symptoms during pregnancy may not be associated with lower birth weight¹⁷ or younger gestational age and preterm delivery.18 As reviewed, antenatal stress and depression have also been correlated with elevated cortisol levels, language and cognitive impairment, impulsivity, attentiondeficit disorder, behavioural dyscontrol and psychopathology in offspring during childhood.19 A recent study reported that high levels of prenatal anxiety and depression were associated with more sleep problems in children at 18 and 30 months.²⁰ Hypotheses about the influence of maternal stress and depression on obstetric variables (e.g., preterm delivery) and later childhood development include elevated placental levels of corticotropin-releasing hormone and cortisol, alterations in immune function, increased catecholamines and uterine vascular changes. 15,16,21-24 Risk of recurrence with antidepressant discontinuation To minimize exposure of the fetus to antidepressants, women with prior depression who are doing well on an antidepressant medication may choose to discontinue it before conceiving or once they have conceived. Cohen and colleagues25 undertook a prospective naturalistic study of women with prior depression who were doing well on an antidepressant at conception. They recently reported that 68% of 44 women who discontinued their antidepressant medication had a relapse of their depression, compared with 26% of 82 women who maintained their antidepressant through pregnancy. A smaller prospective study by Cohen and colleagues26 reported that 75% of 32 euthymic women with previous depression who discontinued their antidepressant just before or at conception suffered a relapse during pregnancy, mostly during the first trimester. Another study suggested that depressive symptoms may even recur in women who continue antidepressant medication through pregnancy.27 Thus the risk of depression recurrence is high when euthymic women discontinue antidepressants around the time of conception. If depression recurs, the fetus is then exposed to the negative consequences of untreated depression and anxiety described above. # Antidepressant medication and pregnancy Selective serotonin reuptake inhibitors (SSRIs) and serotoninnorepinephrine reuptake inhibitors (SNRIs) have replaced tricyclic antidepressants (TCAs) as first-line treatments for depression. Because at least one-half of pregnancies are unplanned, women who become pregnant while taking an antidepressant medication are likely to be taking an SSRI or other newer antidepressant. A recent study reported that in 2001 5% of pregnant women in British Columbia had taken an SSRI during pregnancy.28 Other studies have estimated that up to 9% of pregnant women have been taking an SSRI at some point during their pregnancy.²⁹⁻³³ These rates suggest that a substantial number of pregnant women take an antidepressant medication for at least a portion of their pregnancy. The fetus is exposed to antidepressant medication through the placenta. SSRIs and their metabolites have been detected in both umbilical cord blood and amniotic fluid, with ratios of cord blood to maternal serum concentrations ranging from 0.29 to 0.89.34 Ratios closer to 1 suggest increased fetal exposure to a drug, relative to maternal serum levels, and higher fetal levels may contribute to neonatal complications.34-36 However, fetal drug exposure is determined by factors additional to maternal serum concentration, and current research is examining the role of fetal genotypes for drug metabolism and transporter proteins located in the placenta.36,37 Miscarriage and birth outcome A recent meta-analysis reported a significant odds ratio of 1.7 for spontaneous miscarriage with SSRI use.³⁸ Another recent meta-analysis similarly concluded that, compared with nonexposure, maternal exposure to antidepressant medication was associated with a 1.45 relative risk of spontaneous miscarriage; however, the spontaneous miscarriage rate of 12.4% with exposure was within the range of normal population rates.³⁹ Studies of the influence of SSRI exposure on birth outcomes have yielded mixed results. Lower birth weight, younger gestational age at birth and lower Apgar scores have been reported with SSRI exposure, compared with TCA exposure or no exposure, 40 and with third-trimester exposure to fluoxetine, compared with first- or second-trimester exposure.41 Lower birth weight has been associated with higher dosages of fluoxetine in comparison with lower dosages or with other SSRIs.42 A retrospective review of records of a Canadian population cohort reported that maternal use of SSRIs increased the risk of low birth weight, preterm birth, fetal death and seizures in infants in comparison with infants born to mothers without SSRI exposure.43 However, other studies have failed to find birth weight differences between infants with early and late exposure to SSRIs44,45 or between infants exposed to SSRIs and nonexposed infants. 46,47 Many of the studies examining miscarriage rates and birth outcomes have not controlled for untreated maternal depression, concomitant medications, smoking, alcohol or drug misuse, reproductive history, maternal age or other sociodemographic variables. A recent study compared infants exposed prenatally to SSRIs with infants of mothers with untreated depression and infants of healthy control subjects and reported that prenatal exposure to SSRIs was associated with lower gestational age at birth and increased risk of preterm birth, but not with lower birth weight or lower Apgar scores.¹⁸ Another recent, large study of more than 119 000 births compared birth outcomes of infants whose mothers suffered from depression treated with SSRIs, infants whose mothers had depression not treated with SSRIs and infants of nonexposed control mothers while controlling for the severity level of maternal depression.28 Compared with infants of mothers whose depression was not treated with SSRIs, infants of SSRI-treated mothers were more likely to have lower birth weight and younger gestational age; moreover, a higher proportion were born at less than 37 weeks. When maternal illness severity was controlled for, maternal depression and SSRI use were significantly associated with increased incidence of birth weight below the 10th percentile. The compelling results of this study of a large sample of birth outcomes suggest that exposure to SSRIs adds to the negative birth outcomes (lower birth weight and younger gestational age) that are due to the effect of exposure to underlying depression alone.28 ## Congenital malformations Several studies have examined rates of congenital malformations associated with exposure to antidepressants during pregnancy and compared them with rates in the general population. One recent meta-analysis reported that SSRIs were not associated with an increased risk of major or minor malformations.³⁸ Another recent meta-analysis involving 7 prospective studies and 1774 cases reported that newer antidepressants as a group were not associated with a risk of major malformations above the 1%-3% population baseline risk.48 However, a recent study of teratogenicity data from 151 800 births in Denmark reported that 4.9% of children born to mothers who took SSRIs early in pregnancy had congenital malformations, compared with 3.4% of children born to mothers who did not take SSRIs during pregnancy, yielding a 1.34 increased relative risk.49 The common malformation types were cardiovascular (29%), muscle and bone (31%) and digestive organ (14%). As in many studies, this study did not control for underlying maternal psychiatric disease. Two recently published large case-control studies have reported a small increased risk of omphalocele, craniosynostosis and anencephaly with early-pregnancy use of SSRIs as a group,⁵⁰ as well as an association of sertraline with omphalocele and of paroxetine with right ventricular outflow tract obstruction defects.⁵¹ However, the absolute risks were low. Other studies have reported a lack of elevated congenital malformation rates with exposure to fluoxetine41,42,52-54 or with exposure to sertraline, paroxetine, fluvoxamine and citalopram. 42,46,54-56 With regard to paroxetine, a retrospective study reported an increased risk of 2.2 for overall major congenital malformations and an increased risk of 2.08 for cardiovascular malformations (mostly ventricular septal defects), compared with other antidepressants. In 2005, given these results, GlaxoSmithKline added a warning to the paroxetine label concerning its use in pregnancy.⁵⁷ In December 2005, the Food and Drug Administration (FDA) issued a public health advisory about paroxetine use in pregnancy, and paroxetine's FDA pregnancy category was changed from C to D. Another retrospective cohort study⁵⁸ and a recent meta-analysis⁵⁹ have confirmed the increased risk of cardiac malformations with paroxetine use in the first trimester. However, a recent study of teratology information services reported that paroxetine was not associated with increased risk of cardiovascular defects after first-trimester use.⁶⁰ An absence of increased risk for congenital malformations has been reported with TCAs,61 venlafaxine,62 mirtazapine,63 bupropion,64,65 trazodone and nefazodone.66 # Neonatal behavioural syndrome A neonatal behavioural syndrome, also termed neonatal toxicity, poor neonatal adaptation and neonatal abstinence syndrome, has been described in a proportion of neonates exposed to antidepressants in the third trimester. A comprehensive review of cohort studies and case studies reported that SSRI exposure in late pregnancy carries an overall risk ratio of 3.0, compared with first-trimester exposure or no exposure. 67 A recent study estimated that neonatal behavioural symptoms occur in 30% of neonates.68 The behavioural syndrome includes jitteriness, poor muscle tone, weak or absent cry, respiratory distress, hypoglycemia, low Apgar score and possible seizures. 69,70 The symptoms are usually mild and transient, but supportive care in special care nurseries may be indicated. 55,67,71 A recent study reported that 15.7% of infants born to mothers who took SSRIs during the third trimester were treated in special or intensive care units, compared with 11.2% of infants exposed during the first trimester only; however, the neonatal symptoms associated with stay in special care units were not identified. The recent large study of more than 119 000 births mentioned above also reported that infants of mothers whose depression was treated with SSRIs were significantly more likely to have respiratory distress at birth. 28 Examination of adverse event reactions in the World Health Organization database (over 3 million case records)⁷² and a comprehensive literature review⁶⁷ have indicated that neonatal behavioural symptoms are particularly associated with paroxetine and fluoxetine. Additional cases of neonatal symptoms have been recently reported with third-trimester use of venlafaxine,73,74 citalopram55,75 and paroxetine.76 The signs and symptoms of the neonatal behavioural syndrome have not been consistently characterized, but they are similar to signs and symptoms of adult serotonin toxicity, SSRI discontinuation syndrome and cholinergic overdrive. 67,69,70,777 More study of the neonatal symptoms is needed because studies to date have not included blinded infant assessments, use of an established neonatal behavioural symptom scale, control for maternal variables and systematic follow-up to evaluate long-term sequelae.78 Neonatal jitteriness, irritability, respiratory difficulties, poor suck reflex, urinary retention, functional bowel obstruction and, rarely, seizures have also been described with third-trimester TCA use. 10,35 In 2005, the FDA suggested that an advisory about the potential for neonatal symptoms with late third-trimester use be included in antidepressant prescribing information. ## Persistent pulmonary hypertension in the newborn In early 2006, a case-control study suggested an association between SSRI use after week 20 of pregnancy and an increased risk of persistent pulmonary hypertension of the newborn (PPHN).31 The normal risk of PPHN in newborns is 1/700; with SSRI exposure after week 20, this was raised to 7/1000 with controlling for maternal body mass index, diabetes, nonsteroidal anti-inflammatory drug use and smoking. Although the increase in absolute risk is small, it is of concern because PPHN can be fatal in 10%-20% of newborns. The authors suggested that SSRIs might promote pulmonary artery constriction after birth by inhibiting the vasodilator nitric oxide or by direct effects on pulmonary smooth muscle cells.31 However, these theories of SSRI pulmonary effects have been challenged. 79,80 The authors also suggested that PPHN might fall on the severe end of the spectrum of various respiratory and hypoxic neonatal behavioural symptoms associated with third-trimester SSRI use.31 Notably, the increased risk of PPHN was not associated with SSRI use at any point in the pregnancy, and SSRI use before week 20 approached significance as a protective factor against PPHN.31 In July 2006, the FDA issued an alert about the increased risk of PPHN with SSRI use in the second half of pregnancy. Long-term effects of antidepressant medications during pregnancy There are few longitudinal studies examining the cognitive, neurologic and behavioural status of children exposed to untreated disease or antidepressant medications during pregnancy. Reports of altered cord blood serotonin metabolites,81 decreased whole blood serotonin levels and platelet serotonin uptake82 and increased tremulousness and altered sleep organization in neonates,83 as well as blunted pain responses in 2-month-old infants,84 raise concerns about possible longterm effects of SSRI exposure during pregnancy on neurotransmitter function. Two studies in a cohort of 4-year-old children recently reported that current maternal depression, but not exposure to SSRIs during pregnancy, was associated with internalizing (i.e., emotional reactivity, depression, withdrawal and anxiety)85 and externalizing (i.e., increased activity and aggression)86 behaviours. A review of previous studies of the long-term development of children with prenatal or postnatal SSRI exposure, or both, identified 11 studies (306 children) demonstrating no impairment with exposure and 2 studies (81 children) suggesting mild adverse effects.87 Normal neurodevelopment, language development and IQ were reported in prospective cohorts of children up to age 5 years exposed to TCAs or fluoxetine, compared with children having no exposure.88,89 Normal neurodevelopment at 1 year was also reported in a prospective study of infants with fetal exposure to citalopram who were compared with nonexposed infants.90 One of the 2 studies suggesting mild adverse development in children with SSRI exposure was prospective, suggesting subtle slowed motor development and motor control in comparison with the children of mothers with depression who elected not to take medication.91 The other study was retrospective, reporting abnormal psychomotor development testing in children aged 7-10 months who were previously exposed to antidepressants, compared with nonexposed children.92 Further systematic studies of the long-term developmental effects of exposure to both untreated illness and antidepressant medication are needed. ### Anxiolytic medications and pregnancy Benzodiazepines are sometimes used in pregnancy as adjunctive treatments for comorbid anxiety or insomnia. A case-control study of 22 865 infants with congenital abnormalities who were compared with 38 151 infants without congenital abnormalities did not reveal an association between first-trimester exposure to benzodiazepines and teratogenic risk.93 However, meta-analyses of studies have identified a small increased risk of oral cleft with in utero exposure to benzodiazepines. 61,94 A recent study reported that firsttrimester benzodiazepine exposure was associated with pylorostenosis and alimentary tract atresia, premature birth and low birth weight, but not with orofacial clefts.95 It has been recommended that benzodiazepine use be avoided during the first trimester organogenesis period, if possible. If anxiolytics are used, shorter half-life benzodiazepines, monotherapy, the lowest possible dosage and divided doses should be considered.⁹⁶ Floppy infant syndrome and benzodiazepine withdrawal are 2 types of potential neonatal complications with thirdtrimester use of benzodiazepines. Floppy infant syndrome is characterized by hypothermia, lethargy, feeding difficulties, and poor respiratory effort. 96,97 Symptoms of neonatal benzodiazepine withdrawal, which may persist for weeks, include irritability, hyperreflexia, hypertonia, restlessness, abnormal sleep patterns, diarrhea, vomiting, apnea, tremors or jerking of the extremities and suckling difficulties.96,97 It was recently reported that the combined use of clonazepam and paroxetine during the third trimester led to more problematic neonatal symptoms than the use of paroxetine alone, possibly owing to increased serum levels of both medications.98 This study suggested that caution is indicated when an adjunctive benzodiazepine is combined with an SSRI. Neonatal symptoms need to be monitored if maternal use of benzodiazepines has occurred proximate to delivery, and slow tapering of benzodiazepines before delivery is prudent if clinically tolerated.97 Both developmental delays and normal neurobehavioural development have been reported, but few studies have been conducted on the long-term development of children exposed to benzodiazepines during pregnancy. 97,99 # Mood stabilizers and pregnancy Lithium and the antiepileptic medications may be used in the treatment of manic symptoms, psychotic symptoms and severe depression. The primary concern about lithium use during pregnancy is that with first-trimester exposure the risk of cardiac anomalies, specifically, Ebstein's anomaly, increases from a risk of 1:2000 (0.05%) to 1:1000 (0.1%).100 Level II ultrasonography at 16-18 weeks' gestation assesses cardiac anomalies. The small but increased absolute risk must be weighed against the risk of untreated or suboptimally treated manic or psychotic symptoms. As pregnancy progresses, it may be necessary to increase the dose and frequency of lithium dosing to maintain stable serum levels. 101,102 Recent guidelines suggest suspending lithium before delivery to avoid maternal toxicity with the rapid decrease in vascular volume at delivery; however, immediately after delivery, the dosage should be increased and serum levels monitored to help prevent postpartum relapse.103 Neonatal effects in infants exposed to lithium include hypotonicity and cyanosis and floppy infant syndrome. Third-trimester lithium use can lead to neonatal diabetes insipidus, hypothyroidism, low muscle tone, lethargy, hepatic abnormalities, respiratory difficulties and polyhydramnios, but these complications are rare. 102,103 Minimal data exist, but there have been no reported negative long-term consequences for child neurobehavioural development after gestational lithium exposure. First-trimester exposure to carbamazepine carries an elevated 0.5%–1% risk of neural tube defects as well as increased risks of craniofacial abnormalities, fingernail hypoplasia and growth retardation. Lower birth weight and decreased head circumference have also been noted. Teratogenicity is increased when carbamazepine is given with other antiepileptics, particularly valproate. Few adverse reports of neonatal toxicity have appeared in the literature, and further studies examining long-term neurobehavioural development in children exposed to carbamazepine are needed. The teratogenic risks associated with valproate are more serious. Several reviews of studies have identified an association between valproate and a greater incidence of major congenital abnormalities than has been found with the other antiepileptics, particularly at dosages above 800–1000 mg daily. ^{105–108} Neural tube defects occur in 5%–9% of neonates after first-trimester exposure. ^{102,109} A fetal valproate syndrome has been described that includes craniofacial abnormalities, cardiovascular abnormalities and developmental delay. ^{104,110} Neonatal toxicity includes decelerations in heart rate, liver toxicity, hypoglycemia, reduced fibrinogen levels, jitteriness, difficulty feeding and abnormal tone. ^{102,109} Valproate should be administered in divided doses, and serum valproate levels should be monitored. ¹⁰⁸ Studies suggesting lower intelligence in children exposed to valproate during pregnancy need to be replicated. ^{105,111–113} With both carbamazepine and valproate, fetal ultrasonography and a test for serum α-fetoprotein level can screen for a neural tube defect. ^{101,114} Supplemental folic acid (3–5 mg daily) is recommended before conception occurs (ideally) and through at least the first trimester. ^{112,115} However, it has not been clearly demonstrated that folic acid supplementation reduces the risk of neural tube defects in pregnant women taking anticonvulsants. Vitamin K 20 mg daily is recommended in the last month of pregnancy to avoid a bleeding diathesis. ¹¹⁵ Much of the teratogenic data collected in the past on carbamazepine and valproate preceded current prenatal screening and folate supplementation guidelines. Results from current prospective registries such as the International Registry of Antiepileptic Drugs and Pregnancy may yield new data about the safety of antiepileptic drugs during pregnancy. ¹¹⁶ Lamotrigine is an antiepileptic drug with known benefit for the maintenance treatment of bipolar disorder; it also shows promise for treatment of rapid-cycling bipolar disorder and bipolar depressive episodes. Lamotrigine monotherapy is associated with a 2%-3% risk of congenital malformations, which is similar to the risk rate in the general population. 106,107,117,118 There is a possibility that, as with valproate, malformations are more likely to occur at higher maternal dosages.¹⁰⁶ However, a recent report from the International Lamotrigine Pregnancy Registry refuted an effect of lamotrigine dosage on rates of birth defects.117 There are as yet no consistent data on specific malformation clusters, intrauterine growth effects or neurobehavioural toxicity, but an association of first-trimester exposure with nonsyndromic cleft palate deformity has recently been suggested.¹⁰⁸ Infants with antigen characteristics that differ from those of the mother have a risk for hepatotoxicity and skin rash. 102,109 Minimal safety data are available for topiramate, gabapentin, levetiracetam and oxcarbazepine. Studies suggest that antiepileptic monotherapy appears to decrease the teratogenic risks in comparison with multiple antiepileptics. 107,108 ## Antipsychotics and pregnancy During pregnancy, antipsychotics may be administered for psychosis, bipolar disorder or severe agitation. Reviews of studies involving haloperidol (a butyrophenone) have not suggested increased rates of congenital malformations, 119-121 although case reports of limb defects have led to the suggestion of a first-trimester ultrasonograph with haloperidol use. ¹²² The findings with phenothiazines have been mixed. ^{119–121} A meta-analysis of first-trimester phenothiazine exposure reported a small increase in the relative risk of congenital anomalies (2.4%) relative to the 2.0% risk in the general population, particularly with phenothiazines having aliphatic side chains (e.g., chlorpromazine). ⁶¹ The use of traditional antipsychotics at the end of the third trimester has been associated with neonatal dyskinesias, tremor, motor restlessness, hypertonicity, difficulty with oral feeding, apathy and cholestatic jaundice. ^{119,120,123} Adverse long-term effects on behavioural and cognitive functioning in children with in utero traditional antipsychotic exposure have not been identified to date, but the data are limited. ^{119,120} The newer "atypical" antipsychotics (i.e., clozapine, olanzapine, risperidone, quetiapine, aripiprazole and ziprasidone) are now used more frequently than traditional antipsychotics owing to their greater tolerability and decreased risk for tardive dyskinesia. However, the side effect profiles of some of the newer antipsychotics are problematic (e.g., weight gain and glucose intolerance), and they should be discussed with the patient, particularly in the context of pregnancy.124 A recent prospective cohort study of 151 infants with first-trimester exposure to olanzapine, risperidone, quetiapine and clozapine did not reveal an increased risk of major malformations in comparison with a nonexposed group. 125 However, women with first-trimester use of these medications did have babies with lower birth weight and had higher rates of therapeutic abortions than the comparison group. 125 A recent review confirms the lack of congenital abnormalities reported with olanzapine, risperidone and clozapine to date119; however, other reports have reported slightly higher malformation rates with olanzapine and clozapine. 126-128 Recent case reports have described healthy births of infants exposed to aripiprazole^{129,130} and quetiapine.¹³¹ No published data exist to date on effects of in utero exposure to ziprasidone. Neonatal shoulder dystocia and seizures have been reported with clozapine use before delivery.^{119,124} It has been suggested that infants exposed in utero to clozapine should have a complete blood count obtained to rule out agranulocytosis. 126,128 A recent report suggests that olanzapine may be associated with higher rates of low birth weight and admission to neonatal intensive care units.36 Studies are needed on the long-term effects on child development of atypical antipsychotic use during pregnancy. # Nonpharmacologic treatments and pregnancy Psychotherapy can be an initial or adjunctive treatment choice for a pregnant woman with depression. A recent meta-analysis identified several psychotherapies routinely used for MDD that have a moderate effect size in perinatal depression. ¹³² Few studies have systematically evaluated psychotherapy in pregnant women with depression, but a randomized controlled study of interpersonal psychotherapy (IPT) reported that a 16-week program of group IPT was superior to a parenting education program in improving Hamilton Depression Rating Scale (HAMD),133 EPDS and Clinical Global Impression Improvement (CGI-I)134 scores in pregnant women suffering from depression.¹³⁵ IPT is an established treatment for PPD,¹³⁶ and its attention to role transitions and interpersonal issues make it an excellent short-term therapy choice for pregnant women with depression, as well. Two small, open studies of individual IPT in pregnant women have also reported positive results. 137,138 Randomized trials have suggested that bright light therapy, 139 massage 140 and acupuncture 141 have efficacy for depression during pregnancy. A recent small study reported that omega-3 fatty acids were superior to placebo for depression during pregnancy.142 Although not specifically studied in pregnant women with depression, moderate exercise is noted to improve maternal well-being without adverse effects on birth outcomes.143 A case report described the successful use of vagus nerve stimulation for depression through pregnancy, labour and delivery.144 Severe depressions not responsive to pharmacotherapy or nonpharmacologic treatments may be responsive to electroconvulsive therapy. Although electroconvulsive therapy has been used safely in pregnancy, specific maternal and fetal precautions need to be implemented.145 # Treatment dilemmas for pregnant women with MDD Given the growing evidence that depression, stress, anxiety and psychotropic medications all involve fetal exposure, pregnant women with depression face significant treatment dilemmas (Box 1). A woman who is doing well on her antidepressant may wish to taper it to decrease the exposure of the fetus to medication, particularly during the first trimester, when organogenesis occurs. However, the risk for relapse of MDD is high, and the woman needs to be monitored for relapse. Cohen and colleagues²⁵ reported that 60% of women who had suffered a relapse after discontinuing their antidepressant restarted their antidepressant during the pregnancy. In an editorial, Rubinow¹⁴⁶ recently posed the question as to whether a 68% likelihood of depressive relapse in untreated women with recurrent depression is worth a 6-fold decrease in the risk of a condition that occurs in 1/1000 infants (i.e., PPHN). Women with severe symptoms who choose to remain medication-free need frequent monitoring and an established safety plan.147 If a pregnant woman decides to start or continue medication, monotherapy and the minimum effective dosage of an antidepressant without known teratogenicity should be used. The dosages of medications may need to be increased as the pregnancy progresses, owing to altered serum levels arising from changes in plasma volume and changes in metabolism.10 Women who have remained on medication through their pregnancy and are doing well face the dilemma of whether or not to taper antidepressant medication before delivery in an attempt to decrease a possible neonatal behavioural syndrome. Such a taper may predispose a woman to an increased risk of depression before delivery and postpartum, the timing of delivery is imprecise, and the benefit to neonates of such a taper has not been established.67 Factors that govern the selection of treatment options include the patient's psychiatric history and response to treatment, plans for breastfeeding, the clinician's presentation of treatment choices with their risks and benefits, the patient's perception of the treatment choices with their risks and benefits and, finally, cultural expectations. 148,149 # Postpartum depression # Postpartum blues Postpartum blues occur in 15%–85% of women, peaking at day 5 and usually resolving by days 7–10.¹⁵⁰ In addition to mood swings, irritability, tearfulness, fatigue and confusion, mild hypomanic symptoms and elation may also occur.^{150–152} A review of risk factors for postpartum blues suggested that neuroticism, depression during pregnancy, prior nonpuerperal depression and prior premenstrual depression were predictive of early mood changes.¹⁵⁰ Since this review, a study has reported that significant risk factors for postpartum depressive symptoms during the first 3 days after delivery included low mood during the third trimester of pregnancy, prior premenstrual dysphoric disorder and prior MDD including PPD.¹⁵³ Another study identified immigration within the last 5 years, previous # Box 1: Risks associated with depression and psychotropic medications during pregnancy Untreated stress, anxiety and depression - Obstetric complications (e.g. low birth weight, preterm delivery, preeclampsia) - Elevated cortisol levels, cognitive impairment, impulsivity, aggressive behaviours, dysphoria and attention-deficit disorder in children Antidepressants: selective serotonin reuptake inhibitors - Slight increase in rate of spontaneous miscarriages - Possible increased risk of cardiac congenital malformations with paroxetine - Lower birth weight or premature birth - Persistent pulmonary hypertension of the newborn with selective serotonin reuptake inhibitors after week 20 - Transient neonatal adaptation symptoms (e.g., jitteriness, respiratory distress, poor feeding) #### Antipsychotics - · Possible small increased risk of congenital malformations - Transient neonatal effects #### Lithium - Increased risk of Ebstein's cardiac malformation - Floppy infant syndrome (neonatal hypotonicity, cyanosis, feeding difficulties) - · Rare hypothyroidism, diabetes insipidus, polyhydramnios #### Carbamazepine - Spina bifida, craniofacial abnormalities, growth retardation Valproate - Spina bifida, craniofacial abnormalities, cardiovascular abnormalities, developmental delay - Transient neonatal effects - Possible lower intelligence in children #### Lamotrigine Possible nonsyndromal cleft palate ... #### Benzodiazepines - · Possible small increased risk of oral cleft - Floppy infant syndrome (neonatal hypotonicity, cyanosis, feeding difficulties) - Neonatal benzodiazepine withdrawal - Possible developmental delay in children nonpuerperal MDD, preeclampsia, stressful life events, lack of perceived support, vulnerable personality style, lack of readiness for hospital discharge and dissatisfaction with infant feeding method as predictors of depressive symptoms at 1 week postpartum. ¹⁵⁴ Many biological measures, such as decreased allopregnanolone ¹⁵⁵ and decreased brain tryptophan availability, ¹⁵⁶ have been examined in women with postpartum blues, but no definite associations have been identified. ¹⁵⁰ Although postpartum blues are transient and do not require intervention, they are important because postpartum blues are a risk factor for subsequent PPD. ¹⁵⁷ # Prevalence of PPD Gavin and colleagues' systematic review⁹ of studies that determined depression by structured interview estimated that the point prevalence of MDD ranged from 1.0% to 5.7% through the first 6 months postpartum, peaking at 3 months postdelivery, and that most episodes occurred with postpartum onset. The point prevalence of major and minor depression ranged from 6.5% to 12.9% through the first 6 months postpartum. A recent large cohort study conducted in Denmark reported that the first 90 days postpartum represent a time of increased risk for new-onset psychiatric disorder, inpatient admission and outpatient treatment in new mothers but not in new fathers. ¹⁵⁸ PPD was the most common new-onset psychiatric disorder in these new mothers. Examinations of sibling pairs have suggested a familial and genetic contribution to the development of PPD. ¹⁵⁹⁻¹⁶¹ The EPDS is the most extensively studied screening measure,¹⁶² and a score of 13 or higher indicates probable PPD.⁶ The EPDS scale measures anxiety symptoms as well as depressive symptoms, and reviews suggest a high false-positive screening rate.^{7,162} Other depression screening measures are also useful, and the optimal time to screen for PPD appears to be between 2 weeks and 6 months after delivery.¹⁶² Prevalence rates vary worldwide, and some cultures report predominantly somatic symptoms.¹⁶³ Because postpartum bipolar disorder can present as depression, it is important to screen postpartum women for hypomanic and manic symptoms.^{147,164} Although suicide and infanticide are not common, women being evaluated for PPD should be screened for thoughts about harm to themselves or others.^{165,166} PPD is underrecognized and undertreated, 5,162 probably even more than MDD is underrecognized and undertreated when not related to pregnancy. Postpartum women with depression are often reluctant to discuss their symptoms with their primary care provider, obstetrician or child's pediatrician. Reasons include fears of being seen as a "bad" mother, fears that they are "crazy" and the stigma associated with having a psychiatric problem. 167 Well-child visits with a pediatrician and the postpartum gynecological visit are the opportunities for the detection of PPD. 168,169 Multiple barriers exist to screening for psychiatric disorders in medical care settings; they include time constraints, clinician discomfort with psychiatric disorders and lack of knowledge about resources. 170 Even when women are identified and referred for treatment with mental health providers, compliance with treatment can be poor owing to minimal time for self because of the demands of newborn care, cost of treatment, lack of childcare, lack of transportation or a mismatch between a woman's background and needs and recommended services.¹⁶⁷ PPD comprises MDD with postpartum onset (the most stringent definition), MDD that began during pregnancy and continues postpartum or MDD in which atypical symptoms predominate; the significance of these differences is unclear. ^{171,172} In addition, some women have depression during pregnancy that improves postpartum. ^{173,174} Postpartum women also have high rates of comorbid anxiety and obsessive symptoms. ^{175–178} It has been suggested that altered cortisol levels and hypothalamo-pituitary-adrenal (HPA) function as well as genetic polymorphisms may underlie the course of perinatal mood and anxiety symptoms. ¹⁷¹ Reviews have extensively examined risk factors for PPD.¹⁷⁹ It has been suggested that at least a subgroup of women who develop PPD have a differential sensitivity to hormonal fluctuations. Bloch and colleagues induced hypogonadism in 16 euthymic women, 8 with previous PPD and 8 without a psychiatric history. 180 Supraphysiologic dosages of estradiol and progesterone were added back for 8 weeks and then withdrawn for 4 weeks under double-blind conditions. Five of the 8 women with prior PPD developed mood symptoms during both the hormone replacement and withdrawal phases, compared with none of the 8 women without prior MDD. A recent study reported an association between MDD and higher levels of estrogen on the third day postpartum, compared with levels in healthy control subjects and in women with previous MDD.¹⁸¹ A recent prospective study of women who were at high risk for PPD reported that PPD was more likely to occur with prior premenstrual dysphoric disorder, prior MDD, mood symptoms with past oral contraceptive use and mood symptoms in the first 2-4 days postpartum. 182 Besides sensitivity to estrogen and progesterone fluctuations at parturition, other biological theories have included altered platelet serotonin transporter binding,183 fluctuations of other gonadal hormonal and neuroactive steroid levels after delivery, altered levels of cortisol and other HPA axis parameters, altered oxytocin and arginine vasopressin levels, altered fatty acid status and brain neurobiological changes.184-187 Sleep disturbance in infants has been described as both a risk factor for and outcome of PPD. 188,189 Psychosocial risk factors include previous depression, depression during pregnancy, anxiety during pregnancy, stressful life events during pregnancy or the early puerperium, poor social support, marital conflict, vulnerable personality and immigrant status. 179,190-192 # Risks to offspring of not treating PPD PPD is associated with marital relationship disruption, low self-esteem, impaired social functioning, impaired occupational functioning and poor quality of life. 193-195 There is clear and abundant evidence of an association between maternal depression and impaired child development. 196-199 PPD is associated with negative effects on maternal-infant interactions such as maternal withdrawal, disengagement, hostility and intrusion.²⁰⁰⁻²⁰² PPD also leads to poor cognitive functioning, emotional maladjustment and behavioural maladjustment in infants and children.^{85,203-207} Untreated maternal depression that persists can lead to externalizing disorders (e.g., conduct disorders) and violent behaviour^{86,208-211} and to psychiatric and medical disorders in adolescence and the early 20s.²¹² It is critical to treat PPD because of the deleterious effects on mother, infant and other family members. #### Prevention studies Several reviews of psychotherapeutic and pharmacologic regimens for the prevention of PPD have been recently published; each notes the lack of clearly effective interventions to prevent PPD.²¹³⁻²¹⁸ Many prevention studies have had methodological limitations and have not been conducted in high-risk pregnant women. A small pilot study reported superior efficacy of sertraline, compared with placebo, in preventing the onset of PPD in 22 women with previous PPD.219 A recent study reported that a group intervention based on IPT principles was superior to standard antenatal care in preventing the occurrence of PPD in 99 financially disadvantaged women at risk for developing PPD.²²⁰ Postpartum administration of progesterone and postpartum debriefing may have harmful effects. Sertraline, high-dose estrogen, mother-to-mother peer support, brief inpatient cognitive-behavioural therapy (CBT), group IPT, prenatal couples classes, minimizing sleep deprivation and intensive midwife-managed care deserve further study. 189,213 ## **Treatment of PPD** There have been few treatment studies conducted with antidepressant medication in women with PPD, and no antidepressant medication is FDA-approved for PPD. Breastfeeding women have been excluded from many of the existing studies. It is assumed that medications that are effective for nonpuerperal MDD are also effective for PPD, although this assumption has not been studied systematically. Some aspects of PPD are unique, such as postpartum hormonal fluctuations, the possible influence of breastfeeding on mood, sleep deprivation and new stresses occuring with a newborn. Even though the administration of placebo to women with PPD poses ethical dilemmas, given the known negative effects of PPD on child development, placebo-controlled studies are needed to establish the efficacy of pharmacologic treatments for PPD. # Antidepressant treatment One placebo-controlled antidepressant treatment trial for PPD compared fluoxetine with supportive counselling in 87 post-partum women with major or minor depression.²²¹ Women who were breastfeeding or who had depression of more than 2 years' duration or whose symptoms were severe enough to "require close monitoring or hospitalization" were excluded. Women were randomized to receive fluoxetine 20 mg daily and 1 counselling session, fluoxetine 20 mg daily and 6 counselling sessions, placebo and 1 counselling session or placebo and 6 counselling sessions. Among the 61 women who completed the 3-month study, fluoxetine was superior to placebo according to the HAMD (mean scores decreased from 13.3 to 2.9 with fluoxetine, compared with a decrease from 14.0 to 5.4 with placebo). Six sessions of counselling were significantly superior to a single session according to HAMD scores (which decreased from mean 13.3 to 3.2 with 6 sessions, compared with a decrease from 14.0 to 4.8 with 1 session). There was no advantage of combined fluoxetine and counselling over either treatment alone. The pretreatment HAMD and EPDS scores were both in the range for mild depression. Another recently published placebo-controlled antidepressant study reported that immediate-release paroxetine was superior to placebo in 70 women with PPD.²²² A recent study compared sertraline and nortriptyline in a flexible-dose regimen over 8 weeks in 109 women with PPD (HAMD-17 item score > 18 at baseline). 223 After either 4 or 8 weeks, no differences were observed between sertraline and nortriptyline in the proportion that responded (defined as a 50% reduction in HAMD score) or remitted (HAMD score \leq 7); by week 8, almost one-half of the full sample had remitted on either medication. Although the side effects in the subjects differed by medication, the burden of side effects was similar. About 45% of subjects were breastfeeding (Dr. K. Wisner, University of Pittsburgh School of Medicine, personal communication, 2008). Infant serum levels were near or below detectable levels, and no adverse effects in the infants were reported.²²³ The lack of a placebo control in this study limits conclusions about the definite efficacy of sertraline and nortriptyline for PPD. The only other published randomized controlled study compared paroxetine and the combination of paroxetine and CBT in 35 women with comorbid postpartum depression and anxiety disorders.²²⁴ Paroxetine was flexibly dosed over 12 weeks, and CBT was administered in 12 individual weekly sessions. About one-half of the total sample of women were breastfeeding. Both treatments led to significant improvements on the 21-item HAMD (mean scores decreased from 22.1 to 4.5 for paroxetine alone and from 21.1 to 6 for paroxetine with CBT), and there were no significant differences between treatments. The lack of a placebo control in this study, as well as the comorbid anxiety in the subjects, limits conclusions about the efficacy of these treatments for most women with PPD. There have been some small open trials of antidepressants for PPD. Flexible-dose sertraline was administered for 8 weeks to 26 postpartum women.²²⁵ Baseline 21-item HAMD scores significantly improved from 22 to 7 at end point. Another open trial described the use of flexible-dose venlafaxine for 15 women with PPD.²²⁶ Ten women (67%) completed the 8-week study, and significant improvement was noted from baseline to end point on the HAMD (mean scores decreased from 26.1 to 7) and the CGI-I (mean scores decreased from 4.6 to 1.8). Breastfeeding women were excluded from this study. A case series reported on 6 women with PPD who were treated for 8 weeks with flexible-dose fluvoxamine.²²⁷ Five of the 6 women completed the study, and 4 women (67%) achieved HAMD scores of 7 or less. An 8-week, open, flexible-dose study of bupropion in 8 women with PPD re- ported median HAMD scores that decreased from 20.5 to 10. Two of the 8 women were breastfeeding, and no adverse effects were noted in their infants.²²⁸ Other small, open reports have suggested efficacy with venlafaxine,²²⁹ phenelzine,²³⁰ fluoxetine,²³¹ sertraline²³² and TCAs.^{233,234} Thus, although antidepressants appear to be effective for PPD, there has not yet been a double-blind, placebo-controlled, randomized trial in women with moderate-to-severe PPD symptoms that includes predominantly breastfeeding women. ### Antidepressants and breastfeeding The American Academy of Pediatrics published breastfeeding rates from a National Immunization Survey conducted in the United States in 2002.235 Initially, 71.4% of infants were breastfed; at 3 months, 42.5% of infants were exclusively breastfed and 51.5% were partially breastfed; at 6 months, 13.3% of infants were exclusively breastfed and 35.1% were partially breastfed; at 1 year, 16.1% of infants were receiving some breast milk. Some studies have suggested that women with depression may be less likely to initiate or maintain breastfeeding, 236 but the 2002 survey suggests that more than two-thirds of breastfeeding mothers with depression are likely to at least start breastfeeding. Thus the risk-benefit assessment of treatment options for the breastfeeding woman with PPD includes the known risk to the child of not treating maternal depression, the efficacy of antidepressant medication for PPD and the risk of exposing the infant to antidepressant medication. In contrast to the lack of compelling treatment efficacy data, there are increasing observational reports regarding the transmission of antidepressants in breast milk, mother and infant serum measures and the presence or absence of adverse effects in the nursing infants (Box 2). The presence of antidepressants in an infant's serum is not necessarily harmful in the short or long term. Conversely, an undetectable infant serum level does not mean that the infant is free from antidepressant exposure.²³⁷ Breast-milk analyses and measurements of infant antidepressant serum levels are not routinely obtained in clinical care. Infants should be monitored for possible effects from medication such as irritability, sedation or change in feeding patterns, and increased monitoring for adverse events is necessary in premature or medically ill neonates.164 Infant exposure to antidepressant medication may be minimized by breastfeeding before daily dosing and by avoiding breastfeeding at the time of peak antidepressant concentration in the breast milk, which varies according to the pharmacokinetics of the antidepressant. A recent case report stated that mirtazapine levels in breast milk peaked 4 hours after the mother took her daily dose, 238 and another study reported that breastfed infants' exposure to sertraline decreased 17.1% when the breast milk was discarded 8–9 hours after maternal sertraline ingestion.²³⁹ There are several comprehensive reviews of the safety of using TCAs, SSRIs and newer antidepressants while breast-feeding. 11,240-251 A pooled analysis of antidepressant levels in mother–infant dyads concluded that sertraline, paroxetine and nortriptyline usually yield undetectable infant serum levels and that elevated infant levels are more likely with fluoxetine and citalopram.²⁴⁹ In addition to the comprehensive reviews cited, the 2 recently published treatment studies in women with PPD add significantly to the absence of reported adverse effects of paroxetine,²²⁴ sertraline²²² and nortriptyline²²² in breastfeeding infants. One study reported that, even though maternal platelet serotonin concentrations decreased with sertraline treatment, infant platelet serotonin transport was not affected, indicating a possible lack of, or minimal effect on, central serotonin transport in the infant.²⁵² Exposure to sertraline appears to confer minimal risk to breastfeeding infants and is the recommended first-line treatment for PPD in one consensus guideline.²⁵³ Paroxetine has a particularly low milk/plasma ratio, and another consensus guideline recommends it while breastfeeding.²⁵⁴ There are mixed reports of adverse effects in breastfeeding infants exposed to fluoxetine. Although several case reports and case series have not identified adverse effects in infants, there have been reports of somnolence, fever and hypotonia, 255 colic and poor sleep, 256 crying, irritability and poor feeding,257 seizure258 and a decreased growth rate.259 Increased infant serum levels of fluoxetine and norfluoxetine have been related to maternal fluoxetine daily doses greater than 20 mg and to exposure during the third trimester of gestation.260-262 Fluoxetine is generally not considered a first-line medication option for PPD in breastfeeding mothers because there are mixed reports of adverse effects and because of the potential accumulation of fluoxetine and norfluoxetine due to their long half-lives. However, if a woman is already taking fluoxetine, monitoring of the infant for adverse effects may be more advisable than switching antidepressants.²⁴⁰ Since the publication of the reviews cited above, there have been recent reports of a lack of adverse effects in breastfeeding # Box 2: Risks of postpartum depression and psychotropic medications with breastfeeding Untreated postpartum depression - Impaired mother-infant attachment - Cognitive impairment, behavioural dyscontrol, psychiatric disorders in children #### Antidepressants - Sertraline, paroxetine and nortriptyline compatible with breastfeeding - Adverse effects reported with fluoxetine, citalopram, bupropion, nefazodone and doxepin - Studies of long-term effects on child development lacking ### Antipsychotics Limited data #### Lithium Not recommended owing to high levels in breast milk and adverse effects in infant #### Carbamazepine Compatible with breastfeeding #### Valproate Compatible with breastfeeding Lamotrigine and other antiepileptics · Limited data #### Benzodiazepines Sedation and withdrawal possible infants from citalopram,⁷⁵ escitalopram,²⁶³⁻²⁶⁵ mirtazapine^{238,266} and a fluvoxamine-quetiapine combination.²⁶⁷ There were earlier reports of poor sleep²⁶⁸ and irritability or restlessness²⁶⁹ with citalopram. An infant seizure has been reported with exposure to bupropion.²⁷⁰ Somnolence, poor feeding and poor temperature regulation have been reported in infants exposed to nefazodone.²⁷¹ To date, no reports have been published regarding duloxetine in breastfeeding infants. Doxepin is the only TCA with reported adverse effects found in 2 breastfeeding infants; these included shallow respiration and sedation²⁷² and poor sucking and swallowing, muscle hypotonia and vomiting.²⁷³ There are very few studies examining long-term cognitive, neurologic and behavioural development in children exposed to antidepressants through breastfeeding.⁸⁷ # Other psychotropic medications and breastfeeding Other psychotropic medications are sometimes used as adjunctive medications for PPD complicated by severe anxiety or for mood stabilization in bipolar or psychotic illness. Benzodiazepines may be used to improve anxiety or insomnia, in particular, before an antidepressant medication takes effect. Sedation and withdrawal symptoms have been reported in breastfeeding infants, and divided low dosages have been suggested. 96,274 Lithium has not been recommended during breastfeeding owing to reports of hypotonia, hypothermia, cyanosis, T-wave inversion and lethargy in infants. 102,110,275,276 However, a recent report suggested that lithium could be safely administered under certain conditions that include the monitoring of infant serum levels.277 Carbamazepine and valproate have been used safely during breastfeeding, and preliminary data suggest that lamotrigine, oxcarbazepine, topiramate, gabapentin and levetiracetam are not associated with adverse effects even when levels in the breast milk are high. 102,105,110,112,275,276,278 The published reports of antipsychotic medication use with breastfeeding are increasing, and a recent guideline suggested preference of antipsychotic to antiepileptic medication with breastfeeding.²⁷⁹ To date, reports of adverse effects are absent with risperidone, with quetiapine alone and with quetiapine combined with fluvoxamine or venlafaxine.267,280,281 Mild developmental delay was noted in 2 infants treated with a combination of quetiapine and paroxetine; however, the delay did not correlate with medication levels in the breast milk, so underlying disease could have been causative.280 There have been mixed reports in the case of infants exposed to olanzapine and clozapine,124,275 and there are no published reports for aripiprazole or ziprasidone. Sporadic adverse effects have been reported with use of traditional antipsychotics.274 Few studies have examined the longterm effect on child development of exposure to mood stabilizers and antipsychotics during breastfeeding. ### **Psychotherapy** IPT is a time-limited therapy with demonstrated efficacy for the treatment of MDD; it is designed to relieve depressive symptoms by assisting patients to make modifications in their interpersonal relationships and by addressing issues such as role change, social support, the marital relationship and life stress.²⁸² IPT is the most extensively studied psychosocial treatment for PPD. O'Hara and colleagues 136 conducted a large-scale randomized controlled trial in 120 women with PPD. In it, 12 sessions of individual IPT were compared with a wait-list control condition, and IPT was shown to have superior efficacy. IPT significantly improved mean 17-item HAMD scores from 19.4 to 8.3, whereas mean HAMD scores improved from 19.8 to 16.8 in the wait-list control condition. Social adjustment scores also improved with IPT in this sample of women with the full spectrum of PPD severity. Additional support for the use of IPT for PPD includes a study of 35 women with PPD, in which 12 sessions of individual IPT and 12 weeks of a mother-infant therapy group were both significantly superior to a wait-list condition in reducing depressive symptoms.²⁸³ Two small, open studies of IPT administered in group sessions to women with PPD demonstrated significant pre- to posttreatment improvement in HAMD and EPDS scores.^{284,285} The studies of other psychosocial interventions for PPD have been extensively reviewed. 132,218,286-288 Some positive results have been reported with lay peer support, support groups led by nurses or health visitors, individual counselling in the home and group therapy led by mental health professionals.²⁸⁸ Many of the studies have limitations that include examination of mild PPD only, small samples, lack of a control group and poorly defined treatment interventions. Two studies with sizeable samples compared psychological treatments for women with PPD. One study compared cognitively oriented therapy focusing on mother-infant interaction, psychodynamically oriented therapy, nondirective counselling and routine primary care in 193 women with PPD. It reported that psychodynamically oriented therapy was superior at 4.5 months but that none of the 3 treatments were superior to routine care in the long term.^{289,290} Another study reported that group CBT, individual counselling and group counselling were each superior to routine primary care in 192 women with PPD.291 Psychotherapy is often preferred to medication for treatment of MDD,²⁹² particularly in postpartum women who are breastfeeding.^{292,293-295} More controlled studies of psychotherapeutic interventions for PPD are needed, as are studies comparing psychotherapy with medication. A meta-analytic review reported that antidepressant medication and antidepressants administered with CBT currently have the largest effect sizes for the treatment of PPD.¹³² It has been suggested that women with mild PPD may be sufficiently treated by non–mental health professionals and by individual or group counselling, whereas women with severe PPD may need medication with or without IPT or CBT administered by trained professionals.²⁸⁸ ## Other treatments for PPD Preliminary reports have suggested that postpartum administration of estrogen may improve mood, but in these studies, a substantial number of the women with PPD were also receiving antidepressant medication. ^{296,297} As reviewed, there is no evidence suggesting that the postpartum administration of progesterone improves mood. ²⁴⁰ Omega-3 fatty acids are of growing interest owing to studies suggesting their efficacy as adjunctive treatments and as monotherapy for MDD. ²⁹⁸⁻³⁰⁰ Recent studies have reported a lack of correlation between fish consumption in pregnancy, fatty acid levels and risk of PPD. ^{301,302} Two studies reported negative results for the prevention of PPD with the administration of omega-3 fatty acids. ^{303,304} A recent preliminary open trial suggested benefit of omega-3 supplementation for PPD. ³⁰⁵ In addition, there are positive reports regarding herbs, ³⁰⁶ light therapy, ³⁰⁷ sleep deprivation, ³⁰⁸ massage, ^{309,310} infant sleep intervention ³¹¹ and exercise. ³¹²⁻³¹⁴ # Treatment dilemmas for postpartum women with MDD The postpartum woman with a psychiatric disorder who is breastfeeding faces a treatment dilemma. The negative effects of untreated PPD on short-term and long-term child development are well established. Women with PPD may seek psychotherapy as a first treatment, but psychotherapy will not always be effective, and women with severe symptoms may need to consider antidepressant medication. Barriers to psychotherapy as an optimal treatment choice include limited availability of therapists highly trained in IPT or CBT, time commitment, child care issues, cost and the sensitivity of the therapist to cultural and sociodemographic factors. 137,240 Women who breastfeed need to be aware that all psychotropic medications pass into breast milk and that the potential for infant exposure exists with each medication. Although many observational reports suggest that many psychotropic medications lack adverse effects in infants, few studies have examined long-term neurocognitive or neurobehavioural effects. Discussions of the treatment options with the postpartum patient and her partner need to include the risks of no treatment, available data about the safety of medications while breastfeeding, the patient's personal psychiatric history and previous treatment responses, her individual treatment preferences and her expectations. 148 Once a medication is selected, low initial dosages and slow titration are advised, with monitoring of the infant for adverse effects.²⁴⁰ Collaboration with the pediatrician is important. If adverse effects in the infant are noted, options include decreasing the dose, changing to partial breastfeeding or changing the medication. ## Conclusion The screening and identification of pregnant and postpartum women with psychiatric disorders needs much improvement. When mental health disorders have been identified, there are many barriers to accessible, acceptable and effective treatment. Women with depression who are pregnant or postpartum and breastfeeding face difficult treatment decisions. Untreated stress, anxiety and depression, as well as psychotropic medications, all involve exposure to the fetus and child. Each month, new studies of the effects of untreated disease and medications on the fetus and breastfeeding infant are published. The clinician can remain informed by monitoring these studies and reviews, as well as by monitoring websites that update information frequently for both the clinician and the patient, such as www.motherrisk.org and www.womensmentalhealth.org. Future studies are needed to confirm the efficacy of antidepressants in perinatal depression, compare antidepressants with psychotherapy and compare combined psychotherapy and antidepressant treatment with either treatment alone. Factors governing a patient's choice of treatment need to be futher identified. There is a definite need for systematic longitudinal studies examining the effects of medication exposure as well as exposure to untreated disease on child neurologic and behavioural development. Competing interests: Dr. Pearlstein has been as a paid consultant for Wyeth Pharmaceuticals and has received speakers fees from Bayer. ### References - 1. Halbreich U. Prevalence of mood symptoms and depressions during pregnancy: implications for clinical practice and research. CNS - Flynn HA, Blow FC, Marcus SM. Rates and predictors of depression treatment among pregnant women in hospital-affiliated obstetrics practices. Gen Hosp Psychiatry 2006;28:289-95. - 3. Smith MV, Rosenheck RA, Cavaleri MA, et al. Screening for and detection of depression, panic disorder, and PTSD in public-sector obstetric clinics. Psychiatr Serv 2004;55:407-14. - Kim HG, Mandell M, Crandall C, et al. Antenatal psychiatric illness and adequacy of prenatal care in an ethnically diverse innercity obstetric population. Arch Womens Ment Health 2006;9:103-7. - Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry 1987;150:782-6. - Matthey S, Henshaw C, Elliott S, et al. Variability in use of cut-off scores and formats on the Edinburgh Postnatal Depression Scaleimplications for clinical and research practice. Arch Womens Ment Health 2006:9:309-15 - 7. Eberhard-Gran M, Eskild A, Tambs K, et al. Review of validation studies of the Edinburgh Postnatal Depression Scale. Acta Psychiatr - 8. Bennett HA, Einarson A, Taddio A, et al. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol 2004;103:698-709. - Gavin NI, Gaynes BN, Lohr KN, et al. Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol 2005;106:1071-83 - Nonacs R, Cohen LS. Assessment and treatment of depression during pregnancy: an update. Psychiatr Clin North Am 2003;26:547-62. - Hallberg P, Sjoblom V. The use of selective serotonin reuptake inhibitors during pregnancy and breast-feeding: a review and clinical aspects. J Clin Psychopharmacol 2005;25:59-73 - 12. Monk C, Sloan RP, Myers MM, et al. Fetal heart rate reactivity differs by women's psychiatric status: An early marker for developmental risk? J Am Acad Child Adolesc Psychiatry 2004;43:283-90. - 13. Alder J, Fink N, Bitzer J, et al. Depression and anxiety during pregnancy: A risk factor for obstetric, fetal and neonatal outcome? A critical review of the literature. J Matern Fetal Neonatal Med 2007;20: 189-209 - 14. Henry AL, Beach AJ, Stowe ZN, et al. The fetus and maternal depression: implications for antenatal treatment guidelines. Clin Obstet Gynecol 2004;47:535-46. - Bonari L, Pinto N, Ahn E, et al. Perinatal risks of untreated depression during pregnancy. Can J Psychiatry 2004;49:726-35. - Halbreich U. The association between pregnancy processes, preterm delivery, low birth weight, and postpartum depressions the need for interdisciplinary integration. Am J Obstet Gynecol - 17. Evans J, Heron J, Patel RR, et al. Depressive symptoms during - pregnancy and low birth weight at term: longitudinal study. Br J Psychiatry 2007;191:84-5. - Suri R, Altshuler L, Hellemann G, et al. Effects of antenatal depression and antidepressant treatment on gestational age at birth and risk of preterm birth. Am J Psychiatry 2007;164:1206-13. - Van den Bergh BR, Mulder EJ, Mennes M, et al. Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A review. Neurosci Biobehav Rev 2005;29:237-58 - O'Connor TG, Caprariello P, Blackmore ER, et al. Prenatal mood disturbance predicts sleep problems in infancy and toddlerhood. Early Hum Dev 2007;83:451-8 - Talge NM, Neal C, Glover V, et al. Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Child Psychol Psychiatry 2007;48:245-61. - Diego MA, Jones NA, Field T, et al. Maternal psychological distress, prenatal cortisol, and fetal weight. Psychosom Med 2006;68:747-53. - Wadhwa PD. Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology 2005;30:724-43 - Federenko IS, Wadhwa PD. Women's mental health during pregnancy influences fetal and infant developmental and health outcomes. CNS Spectr 2004;9:198-206. - Cohen LS, Altshuler LL, Harlow BL, et al. Relapse of major depression during pregnancy in women who maintain or discontinue antidepressant treatment. JAMA 2006;295:499-507. - Cohen LS, Nonacs RM, Bailey JW, et al. Relapse of depression during pregnancy following antidepressant discontinuation: a preliminary prospective study. Arch Womens Ment Health 2004;7:217-21. - Marcus SM, Flynn HA, Blow F, et al. A screening study of antidepressant treatment rates and mood symptoms in pregnancy. Arch . Womens Ment Health 2005;8:25-7. - Oberlander TF, Warburton W, Misri S, et al. Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Arch Gen Psychiatry 2006;63:898-906 - Cooper WO, Willy ME, Pont SJ, et al. Increasing use of antidepressants in pregnancy. *Am J Obstet Gynecol* 2007;196:544.e1-5. Ramos E, Oraichi D, Rey E, et al. Prevalence and predictors of antide- - pressant use in a cohort of pregnant women. BJOG 2007; 114:1055-64. - Chambers CD, Hernandez-Diaz S, Van Marter LJ, et al. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med 2006;354:579-87. - 32. Reefhuis J, Rasmussen SA, Friedman JM. Selective serotoninreuptake inhibitors and persistent pulmonary hypertension of the newborn. N Engl J Med 2006;354:2188-90. - Ververs T, Kaasenbrood H, Visser G, et al. Prevalence and patterns of antidepressant drug use during pregnancy. Eur J Clin Pharmacol 2006;62:863-70. - Hendrick V, Stowe ZN, Altshuler LL, et al. Placental passage of antidepressant medications. Am J Psychiatry 2003;160:993-6. - Loughhead AM, Stowe ZN, Newport DJ, et al. Placental passage of tricyclic antidepressants. Biol Psychiatry 2006;59:287-90 - Newport DJ, Calamaras MR, DeVane CL, et al. Atypical antipsychotic administration during late pregnancy: placental passage and obstetrical outcomes. Am J Psychiatry 2007;164:1214-20. - DeVane CL, Stowe ZN, Donovan JL, et al. Therapeutic drug monitoring of psychoactive drugs during pregnancy in the genomic era: challenges and opportunities. J Psychopharmacol 2006;20(Suppl):54-9. - Rahimi R, Nikfar S, Abdollahi M. Pregnancy outcomes following exposure to serotonin reuptake inhibitors: a meta-analysis of clinical trials. Reprod Toxicol 2006;22:571-5. - Hemels ME, Einarson A, Koren G, et al. Antidepressant use during pregnancy and the rates of spontaneous abortions: a meta-analysis. Ann Pharmacother 2005;39:803-9. - Simon GE, Cunningham ML, Davis RL. Outcomes of prenatal antidepressant exposure. Am J Psychiatry 2002;159:2055-61. - Chambers CD, Johnson KA, Dick LM, et al. Birth outcomes in regnant women taking fluoxetine. N Engl J Med 1996;335:1010-5. - Hendrick V, Smith LM, Suri R, et al. Birth outcomes after prenatal exposure to antidepressant medication. Am J Obstet Gynecol 2003; 188:812-5 - Wen SW, Yang Q, Garner P, et al. Selective serotonin reuptake inhibitors and adverse pregnancy outcomes. Am J Obstet Gynecol 2006;194:961-6. - Malm H, Klaukka T, Neuvonen PJ. Risks associated with selective serotonin reuptake inhibitors in pregnancy. Obstet Gynecol 2005;106:1289-96. - Cohen LS, Heller VL, Bailey JW, et al. Birth outcomes following prenatal exposure to fluoxetine. *Biol Psychiatry* 2000;48:996-1000. - Kulin NA, Pastuszak A, Sage SR, et al. Pregnancy outcome following maternal use of the new selective serotonin reuptake inhibitors: a prospective controlled multicenter study. *JAMA* 1998;279:609-10. - Suri R, Altshuler L, Hendrick V, et al. The impact of depression and fluoxetine treatment on obstetrical outcome. *Arch Womens Ment Health* 2004;7:193-200. - Einarson TR, Einarson A. Newer antidepressants in pregnancy and rates of major malformations: a meta-analysis of prospective comparative studies. *Pharmacoepidemiol Drug Saf* 2005;14:823-7. Wogelius P, Norgaard M, Gislum M, et al. Maternal use of selec- - Wogelius P, Norgaard M, Gislum M, et al. Maternal use of selective serotonin reuptake inhibitors and risk of congenital malformations. *Epidemiology* 2006;17:701-4. - Alwan S, Reefhuis J, Rasmussen SA, et al. Use of selective serotonin-reuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med 2007;356:2684-92. - Louik C, Lin AE, Werler MM, et al. First-trimester use of selective serotonin-reuptake inhibitors and the risk of birth defects. N Engl J Med 2007;356:2675-83. - Pastuszak A, Schick-Boschetto B, Zuber C, et al. Pregnancy outcome following first-trimester exposure to fluoxetine (Prozac). *JAMA* 1993;269:2246-8. - Goldstein DJ, Corbin LA, Sundell KL. Effects of first-trimester fluoxetine exposure on the newborn. Obstet Gynecol 1997;89:713-8. - McElhatton PR, Garbis HM, Elefant E, et al. The outcome of pregnancy in 689 women exposed to therapeutic doses of antidepressants. A collaborative study of the European Network of Teratology Information Services (ENTIS). Reprod Toxicol 1996;10:285-94. - Sivojelezova A, Shuhaiber S, Sarkissian L, et al. Citalopram use in pregnancy: prospective comparative evaluation of pregnancy and fetal outcome. Am J Obstet Gynecol 2005;193:2004-9. - Ericson A, Kallen B, Wiholm BE. Delivery outcome after the use of antidepressants in early pregnancy. Eur J Clin Pharmacol 1999;55: 503-8. - Paroxetine [package insert]. Research Triangle Park (NC): Glaxo-SmithKline Pharmaceuticals; September 2005. - Kallen BA, Otterblad Olausson P. Maternal use of selective serotonin reuptake inhibitors in early pregnancy and infant congenital malformations. *Birth Defects Res Part A Clin Mol Teratol* 2007;79: 301-8. - Bar-Oz B, Einarson T, Einarson A, et al. Paroxetine and congenital malformations: meta-analysis and consideration of potential confounding factors. Clin Ther 2007;29:918-26. - 60. Einarson A, Pistelli A, DeSantis M, et al. Evaluation of the risk of congential cardiovascular defects associated with use of paroxetine during pregnancy. *Am J Psychiatry* 2008;165:749-52. 61. Altshuler LL, Cohen L, Szuba MP, et al. Pharmacologic manage- - Altshuler LL, Cohen L, Szuba MP, et al. Pharmacologic management of psychiatric illness during pregnancy: dilemmas and guidelines. Am J Psychiatry 1996;153:592-606. - Éinarson A, Fatoye B, Sarkar M, et al. Pregnancy outcome following gestational exposure to venlafaxine: a multicenter prospective controlled study. Am J Psychiatry 2001;158:1728-30. - 63. Djulus J, Koren G, Einarson TR, et al. Exposure to mirtazapine during pregnancy: a prospective, comparative study of birth outcomes. *J Clin Psychiatry* 2006;67:1280-4. - Cole JA, Modell JG, Haight BR, et al. Bupropion in pregnancy and the prevalence of congenital malformations. *Pharmacoepidemiol Drug Saf* 2007;16:474-84. - Chun-Fai-Chan B, Koren G, Fayez I, et al. Pregnancy outcome of women exposed to bupropion during pregnancy: a prospective comparative study. *Am J Obstet Gynecol* 2005;192:932-6. - Einarson A, Bonari L, Voyer-Lavigne S, et al. A multicentre prospective controlled study to determine the safety of trazodone and nefazodone use during pregnancy. Can J Psychiatry 2003;48: 106-10. - Moses-Kolko EL, Bogen D, Perel J, et al. Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. *JAMA* 2005;293:2372-83. - Levinson-Castiel R, Merlob P, Linder N, et al. Neonatal abstinence syndrome after in utero exposure to selective serotonin reuptake - inhibitors in term infants. Arch Pediatr Adolesc Med 2006;160:173-6. - Koren G, Matsui D, Einarson A, et al. Is maternal use of selective serotonin reuptake inhibitors in the third trimester of pregnancy harmful to neonates? CMAJ 2005;172:1457-9. - Nordeng H, Spigset O. Treatment with selective serotonin reuptake inhibitors in the third trimester of pregnancy: effects on the infant. *Drug Saf* 2005;28:565-81. - 71. Ferreira E, Carceller AM, Agogue C, et al. Effects of selective serotonin reuptake inhibitors and venlafaxine during pregnancy in term and preterm neonates. *Pediatrics* 2007;119:52-9. - 72. Sanz EJ, De-las-Cuevas C, Kiuru A, et al. Selective serotonin reuptake inhibitors in pregnant women and neonatal withdrawal syndrome: a database analysis. *Lancet* 2005;365:482-7. - Pakalapati RK, Bolisetty S, Austin M-P, et al. Neonatal seizures from in utero venlafaxine exposure. J Paediatr Child Health 2006;42: 737-8. - Koren G, Moretti M, Kapur B. Can venlafaxine in breast milk attenuate the norepinephrine and serotonin reuptake neonatal withdrawal syndrome. *J Obstet Gynaecol Can* 2006;28:299-302. - Franssen EJ, Meijs V, Ettaher F, et al. Citalopram serum and milk levels in mother and infant during lactation. Ther Drug Monit 2006:28:2-4 - Knoppert DC, Nimkar R, Principi T, et al. Paroxetine toxicity in a newborn after in utero exposure: clinical symptoms correlate with serum levels. Ther Drug Monit 2006;28:5-7. - Haddad PM, Pal BR, Clarke P, et al. Neonatal symptoms following maternal paroxetine treatment: Serotonin toxicity or paroxetine discontinuation syndrome? J Psychopharmacol 2005;19:554-7. - Austin MP. To treat or not to treat: maternal depression, SSRI use in pregnancy and adverse neonatal effects. *Psychol Med* 2006;36: 1663-70. - 79. Blier P. Pregnancy, depression, antidepressants and breast-feeding. *J Psychiatry Neurosci* 2006;31:226-8. - Kawut SM, Horn EM, Berekashvili KK, et al. Selective serotonin reuptake inhibitor use and outcomes in pulmonary arterial hypertension. *Pulm Pharmacol Ther* 2006;19:370-4. - Laine K, Heikkinen T, Ekblad U, et al. Effects of exposure to selective serotonin reuptake inhibitors during pregnancy on serotonergic symptoms in newborns and cord blood monoamine and prolactin concentrations. Arch Gen Psychiatry 2003;60:720-6. - Anderson GM, Czarkowski K, Ravski N, et al. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors. *Pediatr Res* 2004;56:418-22. - Zeskind PS, Stephens LE. Maternal selective serotonin reuptake inhibitor use during pregnancy and newborn neurobehavior. *Pediatrics* 2004;113:368-75. - 84. Oberlander TF, Grunau RE, Fitzgerald C, et al. Pain reactivity in 2-month-old infants after prenatal and postnatal selective serotonin reuptake inhibitor medication exposure. *Pediatrics* 2005;115:411-25. - Misri S, Reebye P, Kendrick K, et al. Internalizing behaviors in 4-year-old children exposed in utero to psychotropic medications. Am J Psychiatry 2006;163:1026-32. - Oberlander TF, Reebye P, Misri S, et al. Externalizing and attentional behaviors in children of depressed mothers treated with a selective serotonin reuptake inhibitor antidepressant during pregnancy. Arch Pediatr Adolesc Med 2007;161:22-9. - Gentile S. SSRIs in pregnancy and lactation: emphasis on neurodevelopmental outcome. CNS Drugs 2005;19:623-33. - Nulman I, Rovet J, Stewart DE, et al. Neurodevelopment of children exposed in utero to antidepressant drugs. N Engl J Med 1997; 336:258-62. - Nulman I, Rovet J, Stewart DE, et al. Child development following exposure to tricyclic antidepressants or fluoxetine throughout fetal life: a prospective, controlled study. Am J Psychiatry 2002;159:1889-95. - Heikkinen T, Ekblad U, Kero P, et al. Citalopram in pregnancy and lactation. Clin Pharmacol Ther 2002;72:184-91. - Casper RC, Fleisher BE, Lee-Ancajas JC, et al. Follow-up of children of depressed mothers exposed or not exposed to antidepressant drugs during pregnancy. J Pediatr 2003;142:402-8. - Mortensen JT, Olsen J, Larsen H, et al. Psychomotor development in children exposed in utero to benzodiazepines, antidepressants, neuroleptics, and anti-epileptics. Eur J Epidemiol 2003;18:769-71. - 93. Eros E, Czeizel AE, Rockenbauer M, et al. A population-based case-control teratologic study of nitrazepam, medazepam, - tofisopam, alprazolam and clonazepam treatment during pregnancy. Eur J Obstet Gynecol Reprod Biol 2002;101:147-54. - 94. Dolovich LR, Addis A, Vaillancourt JM, et al. Benzodiazepine use in pregnancy and major malformations or oral cleft: meta-analysis of cohort and case-control studies. BMJ 1998;317:839-43. - 95. Wikner BN, Stiller CO, Bergman U, et al. Use of benzodiazepines and benzodiazepine receptor agonists during pregnancy: neonatal outcome and congenital malformations. Pharmacoepidemiol Drug Saf 2007;16:1203-10. - Iqbal MM, Sobhan T, Ryals T. Effects of commonly used benzodiazepines on the fetus, the neonate, and the nursing infant. Psychiatr Serv 2002;53:39-49. - 97. Levey L, Ragan K, Hower-Hartley A, et al. Psychiatric disorders in pregnancy. Neurol Clin 2004;22:863-93. - Oberlander TF, Misri S, Fitzgerald CE, et al. Pharmacologic factors associated with transient neonatal symptoms following prenatal psychotropic medication exposure. J Clin Psychiatry 2004;65:230-7. - McElhatton PR. The effects of benzodiazepine use during pregnancy and lactation. Reprod Toxicol 1994;8:461-75. - Cohen LS, Friedman JM, Jefferson JW, et al. A reevaluation of risk of in utero exposure to lithium. JAMA 1994;271:146-50. - 101. Viguera AC, Cohen LS, Baldessarini RJ, et al. Managing bipolar disorder during pregnancy: weighing the risks and benefits. Can J Psychiatry 2002;47:426-36. - Yonkers KA, Wisner KL, Stowe Z, et al. Management of bipolar disorder during pregnancy and the postpartum period. Am J Psychiatry 2004;161:608-20. - 103. Newport DJ, Viguera AC, Beach AJ, et al. Lithium placental passage and obstetrical outcome: implications for clinical management during late pregnancy. Am J Psychiatry 2005;162:2162-70. - Burt VK, Rasgon N. Special considerations in treating bipolar disorder in women. Bipolar Disord 2004;6:2-13. - Pennell PB. 2005 AES annual course: evidence used to treat women with epilepsy. Epilepsia 2006;47(Suppl 1):46-53. - Perucca E. Birth defects after prenatal exposure to antiepileptic drugs. Lancet Neurol 2005;4:781-6. - 107. Morrow J, Russell A, Guthrie E, et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006;77:193-8 - 108. Tatum WO. Use of antiepileptic drugs in pregnancy. Expert Rev Neurother 2006;6:1077-86. - McElroy SL. Bipolar disorders: special diagnostic and treatment considerations in women. CNS Spectr 2004;9(Suppl 7):5-18. - 110. Iqbal MM, Gundlapalli SP, Ryan WG, et al. Effects of antimanic mood-stabilizing drugs on fetuses, neonates, and nursing infants. South Med J 2001;94:304-22. - 111. Adab N, Kini U, Vinten J, et al. The longer term outcome of children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2004;75:1575-83. - Tettenborn B. Management of epilepsy in women of childbearing age: practical recommendations. CNS Drugs 2006;20:373-87. - Viguera AC, Koukopoulos A, Muzina DJ, et al. Teratogenicity and anticonvulsants: lessons from neurology to psychiatry. J Clin Psychiatry 2007;68(Suppl 9):29-33. - 114. Cramer JA, Gordon J, Schachter S, et al. Women with epilepsy: Hormonal issues from menarche through menopause. Epilepsy Behav 2007;11:160-78 - 115. Crawford P. Best practice guidelines for the management of women with epilepsy. *Epilepsia* 2005;46(Suppl 9):117-24. Pennell PB. EURAP outcomes for seizure control during preg- - nancy: useful and encouraging data. Epilepsy Curr 2006;6:186-8. - 117. Cunnington M, Ferber S, Quartey G, et al. Effect of dose on the frequency of major birth defects following fetal exposure to lamotrigine monotherapy in an international observational study. Epilepsia 2007;48:1207-10 - 118. Cunnington M, Tennis P, Committee ILPRSA. Lamotrigine and the risk of malformations in pregnancy. Neurology 2005;64:955-60. - Trixler M, Gati A, Fekete S, et al. Use of antipsychotics in the management of schizophrenia during pregnancy. Drugs 2005;65:1193-206. - Pinkofsky HB. Effects of antipsychotics on the unborn child: What is known and how should this influence prescribing? Paediatr Drugs 2000;2:83-90. - 121. McElhatton PR. The use of phenothiazines during pregnancy and lactation. Reprod Toxicol 1992;6:475-90. - 122. Diav-Citrin O, Shechtman S, Ornoy S, et al. Safety of haloperidol and penfluridol in pregnancy: a multicenter, prospective, controlled study. *J Clin Psychiatry* 2005;66:317-22. - Collins KO, Comer JB. Maternal haloperidol therapy associated with dyskinesia in a newborn. Am J Health Syst Pharm 2003;60: 2253-5. - 124. Gentile S. Clinical utilization of atypical antipsychotics in pregnancy and lactation. Ann Pharmacother 2004;38:1265-71. - 125. McKenna K, Koren G, Tetelbaum M, et al. Pregnancy outcome of women using atypical antipsychotic drugs: a prospective comparative study. J Clin Psychiatry 2005;66:444-9. - Yaeger D, Smith HG, Altshuler LL. Atypical antipsychotics in the 126. treatment of schizophrenia during pregnancy and the postpartum. Am J Psychiatry 2006;163:2064-70. - 127. Howard L, Webb R, Abel K. Safety of antipsychotic drugs for pregnant and breastfeeding women with non-affective psychosis. BMJ 2004;329:933-4 - 128. Ernst CL, Goldberg JF. The reproductive safety profile of mood stabilizers, atypical antipsychotics, and broad-spectrum psychotropics. J Clin Psychiatry 2002;63(Suppl 4):42-55. - Mendhekar DN, Sharma JB, Srilakshmi P. Use of aripiprazole during late pregnancy in a woman with psychotic illness. Ann Pharmacother 2006;40:575 - Mendhekar DN, Sunder KR, Andrade C. Aripiprazole use in a pregnant schizoaffective woman. Bipolar Disord 2006;8:299-300. - Cabuk D, Sayin A, Derinoz O, et al. Quetiapine use for the treatment of manic episode during pregnancy. Arch Womens Ment Health 2007;10:235-6. - 132. Bledsoe SE, Grote NK. Treating depression during pregnancy and in the postpartum: a preliminary meta-analysis. Res Soc Work Pract 2006;16:109-20. - 133. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62. Guy W. ECDEU assessment manual for psychopharmacology. - Washington: US Department of Health, Education and Welfare; 1976. p 218-22. - 135. Spinelli MG, Endicott J. Controlled clinical trial of interpersonal psychotherapy versus parenting education program for depressed pregnant women. *Am J Psychiatry* 2003;160:555-62. - 136. O'Hara MW, Stuart S, Gorman LL, et al. Efficacy of interpersonal psychotherapy for postpartum depression. Arch Gen Psychiatry 2000;57:1039-45. - 137. Grote NK, Bledsoe SE, Swartz HA, et al. Feasibility of providing culturally relevant, brief interpersonal psychotherapy for antenatal depression in an obstetrics clinic: a pilot study. Res Soc Work Pract - Spinelli MG. Interpersonal psychotherapy for depressed antepartûm women: a pilot study. Âm J Psychiatry 1997;154:1028-30. - Epperson CN, Terman M, Terman JS, et al. Randomized clinical trial of bright light therapy for antepartum depression: preliminary findings. J Clin Psychiatry 2004;65:421-5. - 140. Field T, Diego MA, Hernandez-Reif M, et al. Massage therapy effects on depressed pregnant women. J Psychosom Obstet Gynaecol 2004;25:115-22 - 141. Manber R, Schnyer RN, Allen JJ, et al. Acupuncture: a promising treatment for depression during pregnancy. J Affect Disord 2004;83:89-95. - 142. Su KP, Huang SY, Chiu TH, et al. Omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 2008;69:644-51. - Morris SN, Johnson NR. Exercise during pregnancy: a critical appraisal of the literature. *J Reprod Med* 2005;50:181-8. - Husain MM, Stegman D, Trevino K. Pregnancy and delivery while receiving vagus nerve stimulation for the treatment of major depression: a case report. Ann Gen Psychiatry 2005;4:16. - Pinette MG, Santarpio C, Wax JR, et al. Electroconvulsive therapy in pregnancy. Obstet Gynecol 2007;110:465-6. - 146. Rubinow DR. Antidepressant treatment during pregnancy: between Scylla and Charybdis [editorial]. Am J Psychiatry 2006;163:954-6. - 147. Moses-Kolko EL, Roth EK. Antepartum and postpartum depression: healthy mom, healthy baby. J Am Med Womens Assoc 2004;59:181-91. - 148. Sit DK, Wisner KL. Decision making for postpartum depression treatment. Psychiatr Ann 2005;35:577-85. - 149. Freeman MP. Antenatal depression: navigating the treatment dilemmas. *Am J Psychiatry* 2007;164:1162-5. - Henshaw C. Mood disturbance in the early puerperium: a review. Arch Womens Ment Health 2003;6(Suppl 2):S33-42. - Heron J, Craddock N, Jones I. Postnatal euphoria: Are 'the highs' an indicator of bipolarity? *Bipolar Disord* 2005;7:103-10. - 152. Miller LJ. Postpartum depression. JAMA 2002;287:762-5. - Bloch M, Rotenberg N, Koren D, et al. Risk factors for early postpartum depressive symptoms. Gen Hosp Psychiatry 2006;28:3-8. - Dennis CL, Janssen PA, Singer J. Identifying women at-risk for postpartum depression in the immediate postpartum period. Acta Psychiatr Scand 2004;110:338-46. - 155. Nappi RE, Petraglia F, Luisi S, et al. Serum allopregnanolone in women with postpartum "blues". *Obstet Gynecol* 2001;97:77-80. - Bailara KM, Henry C, Lestage J, et al. Decreased brain tryptophan availability as a partial determinant of post-partum blues. Psychoneuroendocrinology 2006;31:407-13. - 157. Henshaw C, Foreman D, Cox J. Postnatal blues: a risk factor for postnatal depression. *J Psychosom Obstet Gynaecol* 2004;25:267-72. - Munk-Olsen T, Laursen TM, Pedersen CB, et al. New parents and mental disorders: a population-based register study. JAMA 2006; 296:2582-9. - Forty L, Jones L, Macgregor S, et al. Familiality of postpartum depression in unipolar disorder: results of a family study. Am J Psychiatry 2006;163:1549-53. - Murphy-Eberenz K, Zandi PP, March D, et al. Is perinatal depression familial? J Affect Disord 2006;90:49-55. - Treloar SA, Martin NG, Bucholz KK, et al. Genetic influences on post-natal depressive symptoms: findings from an Australian twin sample. *Psychol Med* 1999;29:645-54. - Boyd RC, Le HN, Somberg R. Review of screening instruments for postpartum depression. Arch Womens Ment Health 2005;8:141-53. - 163. Halbreich U, Karkun S. Cross-cultural and social diversity of prevalence of postpartum depression and depressive symptoms. J Affect Disord 2006;91:97-111. - Wisner KL, Parry BL, Piontek CM. Clinical practice. Postpartum depression. N Engl J Med 2002;347:194-9. - Lindahl V, Pearson JL, Colpe L. Prevalence of suicidality during pregnancy and the postpartum. Arch Womens Ment Health 2005;8:77-87. - 166. Spinelli MG. Maternal infanticide associated with mental illness: prevention and the promise of saved lives. *Am J Psychiatry* 2004; 161:1548-57. - 167. Nylen KJ, Segre LS, O'Hara MW. Public health implications of postpartum depression. *Psychiatr Ann* 2005;35:599-609.168. Gjerdingen DK, Yawn BP. Postpartum depression screening: im- - Gjerdingen DK, Yawn BP. Postpartum depression screening: importance, methods, barriers, and recommendations for practice. *J Am Board Fam Med* 2007;20:280-8. - 169. Olson AL, Dietrich AJ, Prazar G, et al. Brief maternal depression screening at well-child visits. *Pediatrics* 2006;118:207-16. - 170. Chaudron LH, Szilagyi PG, Campbell AT, et al. Legal and ethical considerations: risks and benefits of postpartum depression screening at well-child visits. *Pediatrics* 2007;119:123-8. - Kammerer M, Taylor A, Glover V. The HPA axis and perinatal depression: a hypothesis. Arch Womens Ment Health 2006;9:187-96. - 172. Stowe ZN, Hostetter AL, Newport DJ. The onset of postpartum depression: Implications for clinical screening in obstetrical and primary care. *Am J Obstet Gynecol* 2005;192:522-6. - 173. Andersson L, Sundstrom-Poromaa I, Wulff M, et al. Depression and anxiety during pregnancy and six months postpartum: a follow-up study. Acta Obstet Gynecol Scand 2006;85:937-44. - Evans J, Heron J, Francomb H, et al. Cohort study of depressed mood during pregnancy and after childbirth. BMJ 2001;323:257-60. - Brockington IF, Macdonald E, Wainscott G. Anxiety, obsessions and morbid preoccupations in pregnancy and the puerperium. Arch Womens Ment Health 2006;9:253-63. - 176. Abramowitz JS, Schwartz SA, Moore KM, et al. Obsessive-compulsive symptoms in pregnancy and the puerperium: a review of the literature. *J Anxiety Disord* 2003;17:461-78. 177. Ross LE, Gilbert Evans SE, Sellers EM, et al. Measurement issues in - 177. Ross LE, Gilbert Evans ŠE, Sellers EM, et al. Measurement issues in postpartum depression part 1: anxiety as a feature of postpartum depression. Arch Womens Ment Health 2003;6:51-7. - Wenzel A, Haugen EN, Jackson LC, et al. Prevalence of generalized anxiety at eight weeks postpartum. Arch Womens Ment Health 2003;6:43-9. - 179. O'Hara MW, Swain AM. Rates and risk of postpartum depression: a meta-analysis. *Int Rev Psychiatry* 1996;8:37-54. - Bloch M, Schmidt PJ, Danaceau M, et al. Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry 2000;157:924-30. - 181. Klier CM, Muzik M, Dervic K, et al. The role of estrogen and progesterone in depression after birth. *J Psychiatr Res* 2007;41:273-9. - Bloch M, Rotenberg N, Koren D, et al. Risk factors associated with the development of postpartum mood disorders. J Affect Disord 2005:88:9-18. - Newport DJ, Owens MJ, Knight DL, et al. Alterations in platelet serotonin transporter binding in women with postpartum onset major depression. J Psychiatr Res 2004;38:467-73. - Bloch M, Daly RC, Rubinow DR. Endocrine factors in the etiology of postpartum depression. Compr Psychiatry 2003;44:234-46. - Glover V, Kammerer M. The biology and pathophysiology of peripartum psychiatric disorders. *Prim Psychiatry* 2004;11:37-41. - Parry BL, Sorenson DL, Meliska CJ, et al. Hormonal basis of mood and postpartum disorders. Curr Womens Health Rep 2003;3:230-5. - Zonana J, Gorman JM. The neurobiology of postpartum depression. CNS Spectr 2005;10:792-9, 805. - Warren SL, Howe G, Simmens SJ, et al. Maternal depressive symptoms and child sleep: models of mutual influence over time. *Dev Psychopathol* 2006;18:1-16. - Ross LE, Murray BJ, Steiner M. Sleep and perinatal mood disorders: a critical review. J Psychiatry Neurosci 2005;30:247-56. - Beck CT. Predictors of postpartum depression: an update. Nurs Res 2001;50:275-85. - Dennis CL, Ross LE. Depressive symptomatology in the immediate postnatal period: identifying maternal characteristics related to true- and false-positive screening scores. Can J Psychiatry 2006;51: 265-73. - Robertson E, Grace S, Wallington T, et al. Antenatal risk factors for postpartum depression: a synthesis of recent literature. Gen Hosp Psychiatry 2004;26:289-95. - Da Costa D, Dritsa M, Rippen N, et al. Health-related quality of life in postpartum depressed women. Arch Womens Ment Health 2006;9:95-102. - O'Hara MW, Zekoski EM, Philipps LH, et al. Controlled prospective study of postpartum mood disorders: comparison of childbearing and nonchildbearing women. J Abnorm Psychol 1990;99:3-15. - Weinberg MK, Tronick EZ, Beeghly M, et al. Subsyndromal depressive symptoms and major depression in postpartum women. Am J Orthopsychiatry 2001;71:87-97. - Grace SL, Évindar A, Stewart DE. The effect of postpartum depression on child cognitive development and behavior: a review and critical analysis of the literature. Arch Womens Ment Health 2003;6:263-74. - Murray L, Cooper PJ. Postpartum depression and child development. Psychol Med 1997;27:253-60. - Lyons-Ruth K, Wolfe R, Lyubchik A. Depression and the parenting of young children: making the case for early preventive mental health services. *Harv Rev Psychiatry* 2000;8:148-53. - Weinberg MK, Tronick EZ. The impact of maternal psychiatric illness on infant development. J Clin Psychiatry 1998;59(Suppl 2):53-61. - Lovejoy MC, Graczyk PA, O'Hare E, et al. Maternal depression and parenting behavior: a meta-analytic review. Clin Psychol Rev 2000;20:561-92. - Martins C, Gaffan EA. Effects of early maternal depression on patterns of infant-mother attachment: a meta-analytic investigation. *J Child Psychol Psychiatry* 2000;41:737-46. - Weinberg MK, Tronick EZ. Emotional characteristics of infants associated with maternal depression and anxiety. *Pediatrics* 1998; 102(Suppl E):1298-304. - 203. Carter AS, Garrity-Rokous FE, Chazan-Cohen R, et al. Maternal depression and comorbidity: predicting early parenting, attachment security, and toddler social-emotional problems and competencies. J Am Acad Child Adolesc Psychiatry 2001;40:18-26. - Kurstjens S, Wolke D. Effects of maternal depression on cognitive development of children over the first 7 years of life. J Child Psychol Psychiatry 2001;42:623-36. - 205. Hay DF, Pawlby S, Sharp D, et al. Intellectual problems shown by 11-year-old children whose mothers had postnatal depression. *J Child Psychol Psychiatry* 2001;42:871-89. - 206. Romano E, Tremblay RE, Farhat A, et al. Development and predic- - tion of hyperactive symptoms from 2 to 7 years in a populationbased sample. Pediatrics 2006;117:2101-10. - 207. Sohr-Preston SL, Scaramella LV. Implications of timing of maternal depressive symptoms for early cognitive and language development. Clin Child Fam Psychol Rev 2006;9:65-83. - 208. Hay DF, Pawlby S, Angold A, et al. Pathways to violence in the children of mothers who were depressed postpartum. Dev Psychol 2003:39:1083-94 - 209. Goodman SH, Gotlib IH. Risk for psychopathology in the children of depressed mothers: a developmental model for understanding mechanisms of transmission. Psychol Rev 1999;106:458-90. - Weissman MM, Jensen P. What research suggests for depressed women with children. *J Clin Psychiatry* 2002;63:641-7. - 211. Josefsson A, Sydsjo G. A follow-up study of postpartum depressed women: recurrent maternal depressive symptoms and child behavior after four years. Arch Womens Ment Health 2007;10:141-5. - 212. Weissman MM, Wickramaratne P, Nomura Y, et al. Offspring of depressed parents: 20 years later. Am J Psychiatry 2006;163:1001-8. Battle CL, Zlotnick C. Prevention of postpartum depression. - Psychiatr Ann 2005;35:590-8. - Boath E, Bradley E, Henshaw C. The prevention of postnatal depression: a narrative systematic review. J Psychosom Obstet Gynaecol 2005;26:185-92 - 215. Dennis CL. Preventing postpartum depression part I: a review of biological interventions. Can J Psychiatry 2004;49:467-75 - 216. Dennis CL. Preventing postpartum depression part II: a critical review of nonbiological interventions. Can J Psychiatry 2004;49:526-38. - Ogrodniczuk JS, Piper WE. Preventing postnatal depression: a review of research findings. Harv Rev Psychiatry 2003;11:291-307. - Stuart S, O'Hara MW, Gorman LL. The prevention and psychotherapeutic treatment of postpartum depression. Arch Womens Ment Health 2003;6(Suppl 2):\$57-69. - Wisner KL, Perel JM, Peindl KS, et al. Prevention of postpartum depression: a pilot randomized clinical trial. *Am J Psychiatry* 2004;161:1290-2 - Zlotnick C, Miller IW, Pearlstein T, et al. A preventive intervention for pregnant women on public assistance at risk for postpartum depression. Am J Psychiatry 2006;163:1443-5. - 221. Appleby L, Warner R, Whitton A, et al. A controlled study of fluoxetine and cognitive-behavioural counselling in the treatment of postnatal depression. BMJ 1997;314:932-6. - Yonkers KA, Lin H, Howell HB, et al. Pharmacologic treatment of postpartum women with new-onset major depressive disorder: a randomized controlled trial with paroxetine. J Clin Psychiatry 2008;69:959-65. - Wisner KL, Hanusa BH, Perel JM, et al. Postpartum depression: a randomized trial of sertraline versus nortriptyline. J Clin Psychopharmacol 2006;26:353-60. - 224. Misri S, Reebye P, Corral M, et al. The use of paroxetine and cognitive-behavioral therapy in postpartum depression and anxiety: a randomized controlled trial. J Clin Psychiatry 2004;65:1236-41. - Stowe ZN, Casarella J, Landry J, et al. Sertraline in the treatment of women with postpartum major depression. Depression 1995;3:49-55. - Cohen LS, Viguera AC, Bouffard SM, et al. Venlafaxine in the treatment of postpartum depression. J Clin Psychiatry 2001;62:592-6. - Suri R, Burt VK, Altshuler LL, et al. Fluvoxamine for postpartum depression. *Am J Psychiatry* 2001;158:1739-40. - Nonacs RM, Soares CN, Viguera AC, et al. Bupropion SR for the treatment of postpartum depression: a pilot study. Int J Neuropsychopharmacol 2005;8:445-9. - Stowe ZN, Levy ST, Nemeroff CB. Comorbid postpartum depression and bereavement: a complicated case. Am J Psychiatry - 230. Gracious BL, Wisner KL. Phenelzine use throughout pregnancy and the puerperium: case report, review of the literature, and management recommendations. Depress Anxiety 1997;6:124-8. - Roy A, Cole K, Goldman Z, et al. Fluoxetine treatment of postpartum depression. Am J Psychiatry 1993;150:1273 - Pearlstein TB, Zlotnick C, Battle CL, et al. Patient choice of treatment for postpartum depression: a pilot study. Arch Womens Ment Health 2006:9:303-8 - Bromberger JT, Wisner KL, Hanusa BH. Marital support and remission of treated depression. A prospective pilot study of mothers of infants and toddlers. J Nerv Ment Dis 1994;182:40-4. - Wisner KL, Peindl KS, Gigliotti TV. Tricyclics vs SSRIs for postpar- - tum depression. Arch Womens Ment Health 1999;1:189-91. - 235. Li R, Darling N, Maurice E, et al. Breastfeeding rates in the United States by characteristics of the child, mother, or family: the 2002 National Immunization Survey. *Pediatrics* 2005;115:e31-7 - 236. Hatton DC, Harrison-Hohner J, Coste S, et al. Symptoms of postpartum depression and breastfeeding. J Hum Lact 2005;21:444-9. - Newport DJ, Wilcox MM, Stowe ZN. Antidepressants during pregnancy and lactation: defining exposure and treatment issues. Semin Perinatol 2001;25:177-90. - Klier CM, Mossaheb N, Lee A, et al. Mirtazapine and breastfeeding: maternal and infant plasma levels. Am J Psychiatry 2007;164: - 239. Stowe ZN, Hostetter AL, Owens MJ, et al. The pharmacokinetics of sertraline excretion into human breast milk: determinants of infants serum concentrations. J Clin Psychiatry 2003;64:73-80 - Abreu AC, Stuart S. Pharmacologic and hormonal treatments for postpartum depression. Psychiatr Ann 2005;35:568-76. - Burt VK, Suri R, Altshuler L, et al. The use of psychotropic medications during breast-feeding. Am J Psychiatry 2001;158:1001-9. - Dodd S, Buist A, Norman TR. Antidepressants and breast-feeding: a review of the literature. *Paediatr Drugs* 2000;2:183-92 - 243. Eberhard-Gran M, Eskild A, Opjordsmoen S. Use of psychotropic medications in treating mood disorders during lactation: practical recommendations. CNS Drugs 2006;20:187-98. - Gentile S. The safety of newer antidepressants in pregnancy and breastfeeding. Drug Saf 2005;28:137-52 - Gjerdingen D. The effectiveness of various postpartum depression treatments and the impact of antidepressant drugs on nursing infants. J Am Board Fam Pract 2003;16:372-82. - Iqbal MM. Effects of antidepressants during pregnancy and lactation. Ann Clin Psychiatry 1999;11:237-56 - Llewellyn A, Stowe ZN. Psychotropic medications in lactation. Clin Psychiatry 1998;59(Suppl 2):41-52. - Misri S, Kostaras X. Benefits and risks to mother and infant of 248. drug treatment of postnatal depression. Drug Saf 2002;25:903-11. - Weissman AM, Levy BT, Hartz AJ, et al. Pooled analysis of antidepressant levels in lactating mothers, breast milk, and nursing infants. Am J Psychiatry 2004;161:1066-78. - Wisner KL, Perel JM, Findling RL. Antidepressant treatment during breast-feeding. Am J Psychiatry 1996;153:1132-7. - Yoshida K, Smith B, Craggs M, et al. Investigation of pharmacokinetics and of possible adverse effects in infants exposed to tricyclic antidepressants in breast-milk. J Affect Disord 1997;43:225-37 - 252. Epperson N, Czarkowski KA, Ward-O'Brien D, et al. Maternal sertraline treatment and serotonin transport in breast-feeding mother-infant pairs. Am J Psychiatry 2001;158:1631-7 - Altshuler LL, Cohen LS, Moline ML, et al. The Expert Consensus Guideline Series. Treatment of depression in women. Postgrad Med 2001;(Spec No):1-107. - 254. Postnatal depression and puerperal psychosis: a national clinical guideline. Publication no. 60. Edinburgh: Scottish Intercollegiate Guidelines Network; June 2002. Available: www.sign.ac.uk/pdf sign60.pdf (accessed 2007Aug 25) - Hale TW, Shum S, Grossberg M. Fluoxetine toxicity in a breastfed infant. Clin Pediatr (Phila) 2001;40:681-4 - Lester BM, Cucca J, Andreozzi L, et al. Possible association between fluoxetine hydrochloride and colic in an infant. J Am Acad Child Adolesc Psychiatry 1993;32:1253-5. - 257. Kristensen JH, Îlett KF, Hackett LP, et al. Distribution and excretion of fluoxetine and norfluoxetine in human milk. Br J Clin Pharmacol 1999;48:521-7 - Brent NB, Wisner KL. Fluoxetine and carbamazepine concentra-258. tions in a nursing mother/infant pair. Clin Pediatr (Phila) 1998; - 259. Chambers CD, Anderson PO, Thomas RG, et al. Weight gain in infants breastfed by mothers who take fluoxetine. Pediatrics 1999;104:e61 - 260. Hendrick V, Stowe ZN, Altshuler LL, et al. Fluoxetine and norfluoxetine concentrations in nursing infants and breast milk. Biol Psychiatry 2001;50:775-82 - 261. Epperson CN, Jatlow PI, Czarkowski K, et al. Maternal fluoxetine treatment in the postpartum period: effects on platelet serotonin and plasma drug levels in breastfeeding mother-infant pairs. Pediatrics 2003;112:e425. - 262. Kim J, Riggs KW, Kent N, et al. Stereoselective disposition of flu- - oxetine and norfluoxetine during pregnancy and breast-feeding. *Br J Clin Pharmacol* 2006;61:155-63. - Rampono J, Hackett LP, Kristensen JH, et al. Transfer of escitalopram and its metabolite demethylescitalopram into breastmilk. Br J Clin Pharmacol 2006;62:316-22. - 264. Gentile S. Escitalopram late in pregnancy and while breastfeeding. *Ann Pharmacother* 2006;40:1696-7. - 265. Castberg I, Spigset O. Excretion of escitalopram in breast milk. *J Clin Psychopharmacol* 2006;26:536-8. - Kristensen JH, Ilett KF, Rampono J, et al. Transfer of the antidepressant mirtazapine into breast milk. Br J Clin Pharmacol 2007;63: 322-7. - Gentile S. Quetiapine-fluvoxamine combination during pregnancy and while breastfeeding. Arch Womens Ment Health 2006;9:158-9. - Schmidt K, Olesen OV, Jensen PN. Citalopram and breast-feeding: serum concentration and side effects in the infant. *Biol Psychiatry* 2000;47:164-5. - Lee A, Woo J, Ito S. Frequency of infant adverse events that are associated with citalopram use during breast-feeding. Am J Obstet Gynecol 2004;190:218-21. - Chaudron LH, Schoenecker CJ. Bupropion and breastfeeding: a case of a possible infant seizure. J Clin Psychiatry 2004;65:881-2. - Yapp P, Ilett KF, Kristensen JH, et al. Drowsiness and poor feeding in a breast-fed infant: association with nefazodone and its metabolites. *Ann Pharmacother* 2000;34:1269-72. - Matheson I, Pande H, Alertsen AR. Respiratory depression caused by N-desmethyldoxepin in breast milk. *Lancet* 1985;2:1124. - 273. Frey OR, Scheidt P, von Brenndorff AI. Adverse effects in a new-born infant breast-fed by a mother treated with doxepin. *Ann Pharmacother* 1999;33:690-3. - 274. Stowe ZN, Llewellyn A, Hostetter A, et al. The use of psychiatric medications during breast-feeding. In: Steiner M, Yonkers KA, Eriksson E, editors. *Mood disorders in women*. London: Martin Dunitz; 2000. p. 329-51. - Gentile S. Prophylactic treatment of bipolar disorder in pregnancy and breastfeeding: focus on emerging mood stabilizers. *Bipolar Disord* 2006;8:207-20. - 276. Sit D, Rothschild AJ, Wisner KL. A review of postpartum psychosis. *J Womens Health (Larchmt)* 2006;15:352-68. - Viguera AC, Newport DJ, Ritchie J, et al. Lithium in breast milk and nursing infants: clinical implications. Am J Psychiatry 2007;164:342-5. - 278. Stowe ZN. The use of mood stabilizers during breastfeeding. *J Clin Psychiatry* 2007;68(Suppl 9):22-8.. - 279. National Institute for Health and Clinical Excellence. Antenatal and postnatal mental health: clinical management and service guidance. NICE clinical guideline 45. London: The Institute; February 2007. Available: http://guidance.nice.org.uk/CG45/niceguidance/pdf/English (accessed 2007 Aug 25). - Misri S, Corral M, Wardrop AA, et al. Quetiapine augmentation in lactation: a series of case reports. J Clin Psychopharmacol 2006; 26:508-11. - 281. Rampono J, Kristensen JH, Ilett KF, et al. Quetiapine and breast feeding. *Ann Pharmacother* 2007;41:711-4. - 282. Stuart S, Robertson M. *Interpersonal psychotherapy: a clinician's guide*. London (UK): Oxford University Press; 2003. - Clark R, Tluczek A, Wenzel A. Psychotherapy for postpartum depression: a preliminary report. Am J Orthopsychiatry 2003;73:441-54. - 284. Klier CM, Muzik M, Rosenblum KL, et al. Interpersonal psychotherapy adapted for the group setting in the treatment of postpartum depression. J Psychother Pract Res 2001;10:124-31. - Reay R, Fisher Y, Robertson M, et al. Group interpersonal psychotherapy for postnatal depression: a pilot study. *Arch Womens Ment Health* 2006;9:31-9. - Boath E, Henshaw C. The treatment of postnatal depression: a comprehensive literature review. J Reprod Infant Psychol 2001;19: 215-48 - 287. Dennis CL. Treatment of postpartum depression, part 2: a critical review of nonbiological interventions. *J Clin Psychiatry* 2004;65: 1252-65. - 288. Kopelman R, Stuart S. Psychological treatments for postpartum depression. *Psychiatr Ann* 2005;35:556-66. - Cooper PJ, Murray L, Wilson A, et al. Controlled trial of the shortand long-term effect of psychological treatment of post-partum de- - pression. I. Impact on maternal mood. Br J Psychiatry 2003;182:412-9. - Murray L, Cooper PJ, Wilson A, et al. Controlled trial of the shortand long-term effect of psychological treatment of post-partum depression: 2. Impact on the mother-child relationship and child outcome. *Br J Psychiatry* 2003;182:420-7. - Milgrom J, Negri LM, Gemmill AW, et al. A randomized controlled trial of psychological interventions for postnatal depression. Br J Clin Psychol 2005;44:529-42. - van Schaik DJ, Klijn AF, van Hout HP, et al. Patients' preferences in the treatment of depressive disorder in primary care. Gen Hosp Psychiatry 2004;26:184-9. - Battle CL, Zlotnick C, Miller IW, et al. Clinical characteristics of perinatal psychiatric patients: a chart review study. J Nerv Ment Dis 2006;194:369-77. - Boath E, Bradley E, Henshaw C. Women's views of antidepressants in the treatment of postnatal depression. J Psychosom Obstet Gynaecol 2004;25:221-33. - Chabrol H, Teissedre F, Armitage J, et al. Acceptability of psychotherapy and antidepressants for postnatal depression among newly delivered mothers. J Reprod Infant Psychol 2004;22:5-12. - 296. Ahokas A, Kaukoranta J, Wahlbeck K, et al. Estrogen deficiency in severe postpartum depression: successful treatment with sublingual physiologic 17beta-estradiol: a preliminary study. J Clin Psychiatry 2001;62:332-6. - Gregoire AJ, Kumar R, Everitt B, et al. Transdermal oestrogen for treatment of severe postnatal depression. *Lancet* 1996;347:930-3. - Freeman MP. Omega-3 fatty acids and perinatal depression: a review of the literature and recommendations for future research. Prostaglandins Leukot Essent Fatty Acids 2006;75:291-7. - Parker G, Gibson NA, Brotchie H, et al. Omega-3 fatty acids and mood disorders. Am J Psychiatry 2006;163:969-78. - Sontrop J, Campbell MK. Omega-3 polyunsaturated fatty acids and depression: a review of the evidence and a methodological critique. Prev Med 2006;42:4-13. - Browne JC, Scott KM, Silvers KM. Fish consumption in pregnancy and omega-3 status after birth are not associated with postnatal depression. J Affect Disord 2006;90:131-9. - 302. Miyake Y, Sasaki S, Yokoyama T, et al. Risk of postpartum depression in relation to dietary fish and fat intake in Japan: the Osaka Maternal and Child Health Study. *Psychol Med* 2006;36:1727-35. - Llorente AM, Jensen CL, Voigt RG, et al. Effect of maternal docosahexaenoic acid supplementation on postpartum depression and information processing. Am J Obstet Gynecol 2003;188:1348-53. - 304. Marangell LB, Martinez JM, Zboyan HA, et al. Omega-3 fatty acids for the prevention of postpartum depression: negative data from a preliminary, open-label pilot study. *Depress Anxiety* 2004;19:20-3. - 305. Freeman MP, Hibbeln JR, Wisner KL, et al. Randomized doseranging pilot trial of omega-3 fatty acids for postpartum depression. *Acta Psychiatr Scand* 2006;113:31-5. - Weier KM, Beal MW. Complementary therapies as adjuncts in the treatment of postpartum depression. J Midwifery Womens Health 2004;49:96-104. - Corral M, Kuan A, Kostaras D. Bright light therapy's effect on postpartum depression. Am J Psychiatry 2000;157:303-4. - Parry BL, Curran ML, Stuenkel CA, et al. Can critically timed sleep deprivation be useful in pregnancy and postpartum depressions? J Affect Disord 2000;60:201-12. - Onozawa K, Glover V, Adams D, et al. Infant massage improves mother-infant interaction for mothers with postnatal depression. J Affect Disord 2001;63:201-7. - Field T, Grizzle N, Scafidi F, et al. Massage and relaxation therapies' effects on depressed adolescent mothers. Adolescence 1996;31:903-11. - 311. Hiscock H, Wake M. Randomised controlled trial of behavioural infant sleep intervention to improve infant sleep and maternal mood. *BMJ* 2002;324:1062-5. - 312. Armstrong K, Edwards H. The effectiveness of a pram-walking exercise programme in reducing depressive symptomatology for postnatal women. *Int J Nurs Pract* 2004;10:177-94. - 313. Da Costa D. Exercise as a nonpharmacologic option for women with PPD. *Prim Psychiatry* 2006;13:18. - 314. Daley AJ, MacArthur C, Winter H. The role of exercise in treating postpartum depression: a review of the literature. *J Midwifery Womens Health* 2007;52:56-62.