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Objective: To identify converging themes from the neurodevelopmental hypothesis of schizophrenia and the pathophysiology of diabetic
pregnancy and to examine mechanisms by which diabetes mellitus in a pregnant mother may increase the risk of schizophrenia in off-
spring. Methods: We reviewed relevant publications on clinical, epidemiologic and animal studies of diabetic pregnancy and the neuro-
developmental aspects of schizophrenia. Results: Epidemiologic studies have shown that the offspring of mothers who experienced dia-
betes mellitus during their pregnancies are 7 times more likely to develop schizophrenia, compared with those who were not exposed to
diabetic pregnancy. Maternal hyperglycemia during pregnancy could predispose to schizophrenia in adult life through at least 3 prenatal
mechanisms: hypoxia, oxidative stress and increased inflammation. Hyperglycemia increases oxidative stress, alters lipid metabolism,
affects mitochondrial structure, causes derangements in neural cell processes and neuronal architecture and results in premature spe-
cialization before neural tube closure. The molecular mechanisms underlying these processes include the generation of excess oxyrad-
icals and lipid peroxide intermediates as well as reductions in levels of polyunsaturated fatty acids that are known to cause increased
dopaminergic and lowered γ-aminobutyric acidergic activity. The combination of hyperglycemia and hypoxia in pregnancy also leads to
altered immune function including increased tumour necrosis factor-α, C-reactive protein and upregulation of other proinflammatory cyto-
kines. Finally, maternal hyperglycemia could have a lasting impact on fetal cellular physiology, resulting in increased vulnerability to
stress and predisposition to schizophrenia via a mechanism known as programming. These prenatal events can also result in obstetric
complications such as fetal growth abnormalities and increased susceptibility to prenatal infection, all of which are associated with a
spectrum of neurodevelopmental anomalies and an enhanced risk of schizophrenia. Conclusion: On the basis of the evidence presented
and taking into consideration the projected increases in the rates of diabetes mellitus among younger women of child-bearing potential, it
is imperative that the neurodevelopmental sequelae of diabetic pregnancy in general, and the increased risk for schizophrenia in particu-
lar, receive further study.

Objectif : Dégager des thèmes convergents à partir de l’hypothèse neurodéveloppementale de la schizophrénie, ainsi que de la patho-
physiologie de la grossesse diabétique, et étudier le mécanisme par lequel le diabète chez une femme enceinte peut accroître le risque de
schizophrénie chez ses descendants. Méthodes : Nous avons étudié des publications pertinentes portant sur des études cliniques,
épidémiologiques et animales de la grossesse diabétique et des aspects neurodéveloppementaux de la schizophrénie. Résultats : Des
études épidémiologiques ont montré que les descendants de mères atteintes de diabète de grossesse sont 7 fois plus susceptibles d’être
atteints de schizophrénie que ceux qui n’ont pas été exposés au diabète de grossesse. L’hyperglycémie maternelle au cours de la
grossesse pourrait prédisposer à la schizophrénie à l’âge adulte à cause d’au moins 3 mécanismes prénataux : l’hypoxie, le stress oxy-
datif et l’inflammation accrue. L’hyperglycémie accroît le stress oxydatif, altère le métabolisme des lipides, a une incidence sur la structure
des mitochondries, perturbe les processus des cellules nerveuses et l’architecture des neurones et entraîne une spécialisation prématurée
avant la fermeture du tube neural. Les mécanismes moléculaires qui sous-tendent ces processus comprennent la production de quantités
excessives d’oxyradicaux et d’intermédiaires du peroxyde lipidique, ainsi que des réductions des concentrations d’acides gras poly-
insaturés reconnus pour causer une élévation de l’activité dopaminergique et une baisse de l’activité acidergique γ-aminobutyrique. La
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Introduction

The schizophrenia–diabetes mellitus (DM) comorbidity
(SDC) has recently emerged as a significant challenge for
clinicians and as a new frontier of the brain–body conun-
drum for researchers.1 Although recent research has focused
on identifying the mechanisms by which schizophrenia and
antipsychotic medications predispose patients to type 2 DM,
little attention has been paid to the prospect that maternal
DM during pregnancy might increase the risk of schizophre-
nia in the offspring. Within the framework of the neurode-
velopmental hypothesis of schizophrenia, this article exam-
ines the role of maternal DM during pregnancy in regard to
increased risk for schizophrenia in offspring.

Neurodevelopmental hypothesis of schizophrenia

The neurodevelopmental hypothesis is widely recognized as
the most comprehensive and influential explanation of the
etiopathogenesis of schizophrenia to be proposed in recent
years.2 It was originally postulated that a prenatal cytoarchi-
tectural aberration (dubbed a “neuro-dislocation syn-
drome”) in the developing brain predisposes a person to al-
tered cortical and subcortical dopaminergic transmission
and the emergence of psychotic symptoms in adult life.3 The
theory served as a heuristic model and stimulated research
in several directions over the past 2 decades, expanding its
scope and validity. An updated version of the model has
3 key elements: a set of causative factors, a series of putative
mechanisms and an integrative framework capable of gen-
erating testable hypotheses. It is now believed that an inter-
action between multiple susceptibility genes and one or
more environmental insults during pre- and perinatal brain
development results in impaired neuronal integrity and con-
nectivity, setting off a cascade of events that extend into
adult life.4 The gene complement may include, but is not lim-
ited to, the disrupted in schizophrenia 1 (DISC1) gene,
neuregulin-1, dysbindin, catechol-O-methyl transferase and
the G72 protein, which regulate key neurotransmitters such
as γ-aminobutyric acid (GABA), glutamate and dopamine
(DA) as well as N-methyl-D-aspartate receptors.5,6 The set of
acquired or environmental factors (or the “first hit”) that
interact with the susceptibility genes to create neuronal dys-
plasia may include perinatal trauma, hypoxia and infection.7

Excessive synaptic pruning, substance abuse and hormonal

changes associated with puberty (“second hit”) further en-
hance the risk, and oxidative stress and excitotoxicity (“third
hit”) seem to precipitate the symptoms.8 In addition to iden-
tifying various causative factors and elucidating the inter-
active mechanisms, the neurodevelopmental hypothesis has
also evolved from a static encephalopathy or fixed-lesion
model to one that accommodates the role of dynamic and
progressive changes in the brain and acknowledges the scope
for preventive intervention.

The focus of the present article is to explore how an en-
vironmental “first hit” imposed by the intrauterine environ-
ment of maternal DM in conjunction with the fetus’ genetic
endowment might increase the risk for schizophrenia. A cas-
cade of events initiated by hyperglycemia and mediated by
hypoxia, inflammation and oxidative stress may, on their
own, increase the risk for schizophrenia, or they may exert
their effects via obstetric complications and increased risk of
prenatal infection (Fig. 1). We first appraise the evidence sup-
porting the involvement of these factors, after which we
present an overview of putative mechanisms that seem to
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combinaison hyperglycémie et hypoxie au cours de la grossesse entraîne aussi une altération de la fonction immunitaire, y compris un ac-
croissement du facteur α de la nécrose tumorale, des protéines C réactives et une régulation à la hausse d’autres cytokines qui favorisent
l’inflammation. Enfin, l’hyperglycémie maternelle pourrait avoir un effet durable sur la physiologie des cellules du fœtus, causant une vul-
nérabilité accrue au stress et une prédisposition à la schizophrénie via un mécanisme dit de programmation. Ces événements prénataux
peuvent aussi causer des complications obstétriques comme des anomalies de la croissance du fœtus et une sensibilité accrue à l’infec-
tion prénatale, phénomènes que l’on associe tous à un éventail d’anomalies neurodéveloppementales et à un risque accru de schizo-
phrénie. Conclusion : Compte tenu des données présentées et des augmentations projetées des taux de diabète chez les jeunes femmes
en âge de procréer, il est impératif d’étudier davantage les séquelles neurodéveloppementales d’une grossesse diabétique en général et
le risque accru de schizophrénie en particulier.
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Fig. 1: Pathophysiology of gestational diabetes and schizophrenia
in the offspring.
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mediate the increased risk. Finally, we consider research
strategies aimed at further exploring the link.

Maternal DM in pregnancy and its consequences

DM complicates up to 7% of pregnancies9 and is the most
common metabolic complication of gestation that increases
maternal and neonatal morbidity.10 DM occurring during the
prenatal period is classified into 2 types: gestational DM
(GDM) and pregestational DM (PGDM).11 GDM accounts for
90% of all cases of maternal DM in pregnancy and is diag-
nosed when impaired glucose tolerance is first detected dur-
ing pregnancy. Of the remaining cases, 60% have a diagnosis
of type 2 DM before pregnancy, while 40% have preexisting
type 1 DM.9 Unlike PGDM, GDM develops less frequently be-
fore the third trimester, so the fetus is able to pass through
organogenesis free of hyperglycemia,11 resulting in lower rates
of mortality12 and major birth defects.13

The effects of maternal hyperglycemia on fetal develop-
ment are varied and determined by the severity and the time
of onset of DM. Because insulin from the mother does not
cross the placenta, the fetus’ pancreatic insulin output is
solely determined by the glucose levels in the maternal
blood.14 High maternal serum glucose stimulates increases in
fetal insulin output resulting in elevated rates of
macrosomia,15 the most common complication of GDM.
Macrosomia increases the risk of obstetric complications in-
cluding trauma, cesarean section15,16 and perinatal asphyxia.17

The complications of PGDM, on the other hand, are more
common and severe than those of GDM18 because pericon-
ceptional hyperglycemia is teratogenic and can lead to con-
genital malformations and miscarriage.19 The risk of congen-
ital malformations in GDM does not differ from that in
nondiabetic women (about 2%17); however, 5.9% and 4.4% of
children born to type 1 and type 2 PGDM mothers, respect-
ively, are adversely affected.20 The human brain is particu-
larly vulnerable to the effects of hyperglycemia, and the rela-
tive risk of central nervous system malformations is
15.5 times higher in diabetic than in normal pregnancies.21

Maternal DM and schizophrenia in the
offspring: a review of the evidence

A review of the neurodevelopmental hypothesis of schizo-
phrenia on one hand and of the adverse neurodevelopmental
consequences of maternal DM on the other provides a com-
pelling argument for considering maternal DM as a risk fac-
tor for schizophrenia in the offspring. However, this theor-
etical plausibility needs to be substantiated by empirical
evidence, which is relatively scant at the present time, al-
though there are some significant leads. The epidemiologic,
clinical and animal studies are reviewed first to compile data
relevant to the current discussion.

Maternal DM and schizophrenia: the epidemiologic link

An impressive number of studies have accrued on the rela-
tion between complications during pregnancy and birth and

the later development of schizophrenia, but few have focused
on the contribution of DM in pregnancy. Cannon and col-
leagues21 summarized the existing data in their meta-analytic
synthesis of the 2 prospective, population-based studies done
on this topic. They derived an odds ratio of 7.76 (1.37–43.9;
p < 0.03) for DM in pregnancy on subsequent risk for schizo-
phrenia in offspring.22

A review of the remaining studies on pregnancy and birth
complications and their relation to schizophrenia in offspring
revealed that none reported data on maternal DM. This puz-
zling finding is likely to have been attributable to a simple
methodological oversight. Studies that examined the link be-
tween obstetric complications and schizophrenia often em-
ployed either Lewis’23 or Parnas’24 obstetric complications
scales, but neither scale contains questions on maternal DM.
Moreover, several studies considered obstetric complications
as a single variable and failed to report data on specific com-
plications such as maternal DM.

It remains unclear at the present time whether diabetic
pregnancy increases the risk for schizophrenia in particular or
whether it is a nonspecific risk factor for a neurodevelop-
mental spectrum of psychiatric disorders. Some evidence sug-
gests that the offspring of children born to mothers with DM
have an increased risk for developing attention-deficit hyper-
activity disorder,25–28 although the findings have been inconsis-
tent.29 In summary, review of the literature suggests that little
is known about the relation between diabetic pregnancy and
psychiatric illnesses other than schizophrenia.

Epidemiologic studies are instrumental in raising ques-
tions, but they are often not equipped to provide conclusive
answers. Therefore, we gathered and summarized support-
ing evidence from clinical populations and animal research
studies to examine the plausibility of the association.

Diabetic pregnancy and neurodevelopmental sequelae: 
human studies

Studies indicate that brain development is not simply con-
fined to the phase of organogenesis and that the cerebral cor-
tex undergoes changes into the postnatal period30; hence,
both GDM and PGDM can affect fetal neurodevelopment.
Despite the high prevalence of DM, surprisingly little is
known about its effects on central nervous system develop-
ment and the behavioural sequelae of diabetic pregnancy. It
has been noted that children born to diabetic mothers exhibit
neurodevelopmental abnormalities that include impairments
in motor functioning, attention span, activity level and learn-
ing ability, some of which are known risk factors in children
who later develop schizophrenia.31–33 Some progeny of PGDM
also have impaired intellectual function in childhood.34 Num-
erous studies have demonstrated that poor performance or
delay in attaining developmental milestones is associated
with a higher risk of having schizophrenia later in life, and it
is also well known that, on average, patients with schizo-
phrenia have a lower IQ than the general population.35

Whether the developmental alterations seen in the offspring
of diabetic mothers represent risk factors for schizophrenia or
are representative of a schizophrenia diathesis is not known.
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Diabetic pregnancy and neurodevelopmental aberrations:
animal data

Observations of the offspring of diabetic animals have also
revealed a range of behavioural, neurochemical and cellular/
molecular abnormalities that are relevant to the present 
discussion. Laboratory animals subjected to streptozotocin-
induced diabetic pregnancy demonstrated anxiety in chal-
lenging situations, including the elevated plus-maze and a
social interaction test, and also manifested hyperactivity in
the open-field behaviour test.36 Female, but not male, rats
born to diabetic mothers have problems with long-term
learning and memory as assessed by the Lashley III maze
and an inhibitory avoidance task, and it has been suggested
that the hyperactivity noted in such offspring is specific to
males. Although there are significant limitations in generaliz-
ing these findings to humans, it is well established that a sig-
nificant proportion of humans who go on to develop schizo-
phreniform spectrum disorders experience clinically
significant difficulties with anxiety and hyperactivity as chil-
dren.37 Moreover, although cognitively heterogeneous, it is
well known that a significant proportion of adults with
schizophrenia also have difficulties with learning and mem-
ory.38 Although there are similarities in the behavioural mani-
festations in the offspring of diabetic animal models and in
persons who later develop schizophrenia, the specificity and
generalizability of these findings is not known, and the rele-
vance of sex-specific behavioural sequelae to schizophrenia
also eludes explanation.

Rats born to mothers who had DM during pregnancy
manifest increased levels of DA and norepinephrine (NE) in
the hypothalamus,39 increased DA, NE and serotonin (5-HT)
in the midbrain-diencephalon junction and caudate nuclei40

and decreased brain weight.41,42 Hyperglycemia has been
shown to lead to swelling of the mitochondria of neural tubes
in rats.43 The increase in cell process volume occurs at the ex-
pense of angiogenesis and results in premature specialization
and formation of neural cell processes before neural tube
closure.44 Alterations in mitochondrial morphology45 and
number46 have also been reported in the brains of adults with
schizophrenia, and cluster analysis of transcriptional alter-
ations in postmortem samples has indicated that genes re-
lated to energy metabolism and oxidative stress differenti-
ated almost 90% of schizophrenia patients from control
participants, suggesting a high degree of specificity for mito-
chondrial pathology in schizophrenia.47 Cytochrome-c oxi-
dase, a key enzyme in the mitochondrial electron transport
chain, manifests altered activity in the hippocampi of rats
that have iron deficiency in their brains, a known conse-
quence of prenatal hyperglycemia.48 Decreased activity of
cytochrome-c oxidase has also been found in the frontal cor-
tex and caudate nucleus in persons with schizophrenia.49

There is as yet no clear mechanistic explanation of how
mitochondrial alterations might lead to schizophrenia; how-
ever, it has been hypothesized that dysfunction of brain energy
metabolism leading to impairments in fronto–striatal–thalamic
circuitry, increases in oxidative stress and/or abnormal intra-
cellular calcium regulation mediate the relation.

Diabetes in pregnancy and increased risk of
schizophrenia: putative mechanisms

The mechanisms by which DM during pregnancy increases
schizophrenia risk are likely to involve an interaction be-
tween the diabetic intrauterine environment that is triggered
by maternal hyperglycemia and the fetus’ prevailing genetic
vulnerability.50,51

Pathophysiology of diabetic pregnancy: the environmental hits

Several biological alterations that are known to occur in
maternal DM and to affect fetal neurodevelopment could ex-
plain how DM during pregnancy might predispose offspring
to schizophrenia. In keeping with a neurodevelopmental
diathesis, these alterations result in changes in neurotransmit-
ter systems and membrane and neuronal integrity that have
also been implicated in the development of schizophrenia.
The most obvious mechanism by which this predisposition
might be mediated is hyperglycemia. A defining characteristic
of DM, it is known to affect neurodevelopment and to induce
immune activation, oxidative stress, hyperinsulinemia,
chronic tissue hypoxia and decreased iron levels in the fetus.

Hyperinsulinemia, hypoxia and iron deficiency

Fetal hypoxia has often been implicated as a “final common
pathway” by which obstetric complications increase future
schizophrenia risk.52 Hyperglycemia present during preg-
nancy is thought to induce a chronic intrauterine tissue hy-
poxia in the fetus53 that is likely triggered by the chronic fetal
hyperinsulinemia that develops in response to maternal
hyperglycemia.54 Elevated insulin levels increase oxygen con-
sumption and metabolism in the fetus, and chronic hypoxia
results because the placenta is unable to upregulate the deliv-
ery of oxygen to meet this demand.55,56 Hypoxia affects neuro-
development in several ways ranging from alterations in
myelination57 and cortical connectivity58 to excitotoxicity and
cell death59 and is relevant to the etiology of schizophrenia.

In the presence of hypoxia, excess erythropoietin and
hemoglobin are produced as the fetus attempts to maintain
oxygen delivery to tissues.60 In this state, the fetus’ need for
iron exceeds its supply, leading to its mobilization from vital
tissues such as the brain.61,62 Human fetuses born to diabetic
mothers possess brain iron content that is only 40% of nor-
mal.63 Iron also plays a vital role in neuronal replication,64

myelin formation65 and neurotransmitter synthesis, especially
DA.66 In animal models, iron deficiency appears to affect
developing brain monoaminergic systems67 and results in
persistent changes in behaviour despite normalization of
monoamine and iron parameters postnatally.68 Moreover,
iron deficiency negatively affects cortical development and
function, although the regions and extent of changes result-
ing from this depend on the period in which it is present.69

Lozoff69 has reviewed the effects of altered brain iron on
neurodevelopment in humans. Fetal iron deficiency is known
to manifest as higher levels of irritability70 and increased
negative emotionality71 in infants and is predictive of behav-
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ioural and developmental problems at age 5.72 The study also
suggests that iron deficiency results in changes in the struc-
ture and function of the hippocampus that include alterations
in auditory processing and discrimination.73,74 There are simi-
larities in the auditory processing difficulties seen in infants
born to diabetic mothers and those observed in persons with
schizophrenia.75 Changes in myelination and frontotemporal
circuitry and lesions in the hippocampi of neonatal rats also
result in molecular and behavioural changes similar to those
seen in schizophrenia.76 It is therefore conceivable that brain
iron deficiency secondary to DM in pregnancy could alter
frontotemporal circuitry, contributing or predisposing off-
spring to later emergence of schizophrenia.

Elevated insulin levels also reduced amino acid levels in
animal fetuses, including concentrations of the nonprotein
amino acid taurine, which is known to be involved in fetal
brain development.77 The specificity of this finding and
whether this state persists into adult life are not known, al-
though it is interesting to note that taurine levels also appear
to be diminished in the cerebrospinal fluid (CSF) of drug-
naive adults with schizophrenia.78

Diabetes in pregnancy: a proinflammatory milieu

It has been suggested that hyperglycemia is causally related to
immune activation in DM79 and that the chronic fetal hypoxia
present in maternal DM may also increase the inflammatory
burden incurred by the fetus.80 Moreover, cytokines, including
interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α),
are elevated in infants exposed to asphyxia and hypoxic-
ischemic encephalopathy81,82 and have been implicated in
neuronal damage after such perinatal insults.83,84 Proinflamma-
tory cytokines such as TNF-α cross the placenta and are ele-
vated in maternal tissues,85–87 including the uteri of pregnant
diabetic mice.88 An increase in cytokine release at the feto–
maternal interface is vital to tissue remodelling before fetal
implantation in mice, and if these signals are excessive or im-
properly timed, such alterations can result in dysregulation of
organogenesis and termination of the pregnancy.

Inflammatory cytokines affect neuronal development as
well as the metabolism of neurotransmitters.89–91 That prenatal
infection with various organisms can increase schizophrenia
risk has led some to speculate that the effect is mediated by
the proinflammatory cytokines accompanying infection.92,93

Of relevance to schizophrenia, as Gilmore and Murray94 point
out, these mediators of inflammation decrease the survival of
hippocampal95 and cortical neurons96 in culture and reduce
the dendritic complexity of developing cortical neurons.97

Neuroanatomical alterations associated with prenatal infec-
tion with influenza included increased cortical pyramidal cell
density98 and altered cortical generation99 in mice. Cytokines
also reduced the survival of DA and 5-HT neurons100,101 in ani-
mal models. Few human data exist on the neurobehavioural
effects of inflammatory prenatal environments, although
maternal IL-8 levels in the second trimester were noted to be
nearly twice as high in children who later developed schizo-
phrenia, compared with control participants.102 Levels of
TNF-α in the mother during pregnancy have also been found

to correlate with the development of psychotic disorders later
in life.103 Some have even suggested that the dopaminergic
abnormalities and the structural104,105 and functional106,107 brain
changes seen in schizophrenia are due to alterations in cyto-
kine systems.108,109 Although the precise mechanisms by which
these mediators specifically increase the risk of schizophrenia
are not known, TNF-α could affect schizophrenia risk via its
toxic effects on oligodendrocytes92 or by stimulating micro-
glia to release IL-2, which is known to affect dopaminergic
activity,93 potentially inducing dysregulation of this system
early in life.

Studies in clinical populations suggest that serum or CSF IL-1,
IL-6 and TNF-α levels are elevated in those with schizophre-
nia.110–115 It has been hypothesized that these alterations are due
to pre- or postnatal infectious processes; however, in light of
the above evidence, it is possible that these could be secondary
to maternal DM exposure. Indeed, some limited data suggest
that immune alterations occurring prenatally may persist into
postnatal life,116,117 although these alterations may be state de-
pendent rather than stable and persistent. Given that inflam-
matory cytokines are increased in diabetic pregnancy and have
been implicated in the pathogenesis of schizophrenia, such al-
terations may be relevant to increased schizophrenia risk seen
in infants of diabetic mothers.

Diabetes in pregnancy and oxidative stress

Oxidative stress, a state in which oxygen free radicals exceed
the body’s natural antioxidant defenses, has been implicated
in the pathogenesis of GDM, type 2 DM118 and schizophre-
nia119 and may contribute to the increased risk of schizophre-
nia seen in the offspring of diabetic pregnancies. Hyper-
glycemia causes the depletion of antioxidants and the
generation of reactive oxygen species.120 Recent studies have
demonstrated the presence of increased oxidative stress in
women with PGDM and GDM; samples taken from the cord
blood of these mothers’ infants indicate that this milieu is
also shared with the fetus.121–124

In animal models, oxyradicals also play a vital role in the
timing and progression of neuronal development, differentia-
tion125 and synaptic plasticity126; changes in the balance of
these signals can result in alterations in vital neurodevelop-
mental processes. Moreover, the brain is particularly suscept-
ible to oxidative damage, owing to its high oxygen consump-
tion and poor antioxidant defenses.127 Free radicals can cause
oxidation of lipids,128 proteins129 and DNA,130 inactivating the
biological functions of these molecules and potentially lead-
ing to cell death.

Oxidative stress experienced early in life might contribute
to the pathogenesis of schizophrenia through an attenuation
of the brain GABA receptor function131,132 and reduced synap-
tic efficiency and action potential generation in hippocampal
pyramidal cells,133 and also via the inhibition of dopamine 
β-hydroxylase.134 Given the effects dysmyelination has on
neuronal connectivity and its relevance to the pathophysio-
logy of schizophrenia,135 oxidative stress may specifically in-
crease the risk of schizophrenia via its toxic effects on oligo-
dendrocyte precursors.136



Although adults with schizophrenia also manifest altera-
tions in their antioxidant systems, it is not clear whether these
are the result of exposure to a state of oxidative stress in utero.
According to Yao and colleagues,119 replicated findings in
schizophrenia patients include decreased levels of nonenzym-
atic antioxidants in peripheral tissues and CSF and increased
superoxide dismutase activity. These alterations reflect in-
creased oxidative stress and have been noted in persons rang-
ing from drug-naive to chronically medicated patients with
schizophrenia.

Arachidonic acid (AA) and docosohexanoic acid (DHA)
are fatty acids that are known to play an integral role in the
development and maintenance of normal brain and behav-
iour, and alterations in these and oxyradicals in general may
predispose offspring to adverse neurobehavioural out-
comes.137 Arachidonic acid and DHA are essential to the
formation of cellular plasma membranes, but when subjected
to oxidative stress, they form peroxyradicals and lipid perox-
ide intermediates, which leads to changes in the fluidity, 
stability and permeability of these barriers.131

Moreover, decreased levels of the polyunsaturated fatty
acids AA and DHA are found in peripheral tissues in both
mothers with GDM138,139 and their infants140,141 and may possibly
be due to oxidative damage. Of relevance to the pathophysiol-
ogy of schizophrenia, lipid peroxidation by free radicals is
correlated with altered synaptic transmission, increased DA
and decreased GABA uptake by synaptosomes,126 with de-
creased prostaglandin synthesis142 and with changes in the
polyunsaturated fatty acids content of cell membranes.143–146

AA also acts as a second messenger, mediating the effects of
neurotransmitters and neurotrophic factors, systems that are
integral to neuronal growth, differentiation and survival.147

Regardless, it is intriguing that several studies have
demonstrated that persons with schizophrenia, like diabetic
mothers and their offspring, have decreased levels of AA and
DHA in their central and peripheral tissues.148 Thus it is pos-
sible that exposure to DM in prenatal life alters the structure
and function of plasma membranes and neurotransmitter
systems in such a way that they predispose persons to both
DM and schizophrenia. This biochemical alteration may
therefore represent an important causative link between the
2 conditions.

Diabetic pregnancy, birth complications and schizophrenia

The consequences of hyperglycemia are neurodevelopmental
as well as somatic. The 3 “groups” of obstetric complications
that have been postulated to increase schizophrenia risk in-
clude fetal growth retardation, fetal perinatal hypoxia and
prenatal complications,149 and all 3 can be accounted for by
maternal DM.

Growth restriction in utero is a risk factor for schizophre-
nia150 and is seen in diabetic mothers with vasculopathy.151

More recent data suggest that both macrosomia and low birth
weight are associated with schizophrenia risk.152 Diabetic
mothers deliver more macrosomic offspring and are at higher
risk for hypertension and preeclampsia, both of which are as-
sociated with fetal hypoxia.18 The presence of DM in the pre-

natal period also increases the risk of infection.153 Given that
specific prenatal infections are known to increase the risk of
schizophrenia in offspring,154 it is plausible that DM con-
tributes to schizophrenia risk through this mechanism as well.

The final common pathway

The risk of schizophrenia in the offspring born to diabetic
mothers appears to be triggered by hyperglycemia and is
mediated by hypoxia, inflammation and oxidative stress
(Fig. 1), but it may also contribute to or act in concert with ob-
stetric complications and perinatal infection. These environ-
mental stresses might exert their effects via proinflammatory
cytokines, which could initiate various molecular stress cas-
cades and thus serve as a final common pathway to affect
fetal brain development and increase risk for schizophrenia.
These prenatal environmental conditions could act independ-
ently of or in concert with fetal genes to accentuate the
schizophrenia diathesis.

Scope and limitations of the hypothesis

It is important to note that data supporting a relation be-
tween DM in pregnancy and schizophrenia risk are rather
tenuous and are provided by only 2 epidemiologic studies.
As many as 7% of women suffer from DM during pregnancy,
and one-third of the general population have obstetric com-
plications,14 yet relatively few bear children who develop
schizophrenia. Neither complications during pregnancy nor
complications during delivery are necessary or sufficient
causal factors for schizophrenia.149

Both schizophrenia and DM are diseases of adulthood
with origins possibly outlined at birth. Considering the simi-
larities in their etiopathology and natural history and the in-
creased prevalence of the comorbidity in people with schizo-
phrenia, it is conceivable that the 2 disorders share common
genetic elements. In fact, some data suggest that schizophre-
nia and type 2 DM share common susceptibility genes.50,51 In
particular, 2 genetic loci that have been associated with
schizophrenia (2p22.1-p13.2 and 6q21-q24.1) have also been
implicated in linkage studies of patients with type 2 DM.
Thus the relation observed to exist between DM in pregnancy
and schizophrenia in the offspring might also be accounted
for, or contributed to, by the fetus’ genetic endowment.

The presence of other confounding variables also raises
questions about the specificity of this relation. For example,
reduced maternal access to food has been identified as a risk
factor for schizophrenia155,156 as well as DM later in life.157 It
may be that schizophrenia and type 2 DM share certain
“thrifty” genes or alleles that increase the likelihood of sur-
vival in the face of adversity in utero but that put the child at
risk for adverse consequences later in life. Further, children
of low birth weight, whether or not they were exposed to
famine while developing in the womb, appear to be at in-
creased risk for both the conditions.158,159 Increased body mass
index in one’s mother, a risk factor for maternal DM, also ap-
pears to confer greater subsequent risk of schizophrenia in
the offspring.160,161
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Future research directions

More direct evidence is needed to substantiate the putative
link between gestational DM and schizophrenia and to deter-
mine the mechanisms by which maternal DM increases the
risk of schizophrenia in offspring. This may include analyses
of large population-based birth cohorts and scrutiny of data
from high-risk obstetrics clinics. Examining maternal sera for
interactions of biological markers of risk, including indices of
inflammation and oxidative stress, and the genes that might
contribute to this process, could offer further insights into the
sequelae of gestational DM. Studies using laboratory animals
could strengthen the theory by elucidating the molecular
mechanisms, especially the timing of various critical
processes.

Conclusion

Epidemiologic evidence suggests that the offspring of moth-
ers who have DM during pregnancy are at an increased risk
for developing schizophrenia in adulthood. The affected chil-
dren demonstrate behavioural changes, psychomotor impair-
ments, and biochemical and anatomic changes similar to
those seen in persons who are at risk for developing schizo-
phrenia, suggesting that the relation is plausible and that it
may be specific. A cascade of events triggered by maternal
hyperglycemia and mediated by hypoxia, oxidative stress, in-
fection and inflammation leads to various cytoarchitectural
and neurochemical aberrations, constituting putative patho-
physiological mechanisms underlying the link between dia-
betic pregnancy and increased risk of schizophrenia.

The current worldwide epidemic of obesity and DM, espe-
cially among younger women in their reproductive years,
has significant public health implications should the
hypothesis that maternal DM in pregnancy is responsible for
at least a small proportion of cases of schizophrenia. Explor-
ing this link is critical for understanding the pathophysiology
of schizophrenia and may also offer clues toward prevention
and effective treatment of both these disorders.
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