
DOI: 10.1503/jpn.110145
Copyright © 2012, Canadian Medical Association or its licensors.

Fig. S1: Grand average time × frequency power plots of each stimulus type × stimulus frequency × drug administration condition at electrode FCz. The top row displays power under placebo, the middle row displays power under dexamphetamine, and the bottom row displays the dexamphetamine–placebo power difference values. Dexamphetamine significantly increased 40 Hz power for both 40 Hz and 20 Hz stimuli, but there were no drug effects on 20 Hz power. There were also significant main effects of stimulus type on 20 Hz and 40 Hz power for both stimulating frequencies.

DOI: 10.1503/jpn.110145
Copyright © 2012, Canadian Medical Association or its licensors.

Fig. S2: Grand average time × frequency phase-locking factor (PLF) plots of each stimulus type × stimulus frequency × drug administration condition at electrode FCz. The top row presents PLF under placebo, the middle row displays PLF under dexamphetamine, and the bottom row displays the dexamphetamine–placebo PLF difference values. There were no effects of dexamphetamine on either the 20 Hz or 40 Hz PLF. There were significant main effects of stimulus type on 20 Hz and 40 Hz PLF for both stimulating frequencies.
Fig. S3: The effects of stimulus type on 40 Hz phase-locking factor (PLF) and 40 Hz power over time at electrode FCz. Both placebo and dexamphetamine are pooled in the analysis as there was no drug × stimulus type interaction. Displayed are the means and standard errors of the means for the 40 Hz responses averaged over the 20 Hz and 40 Hz stimuli. Target stimuli significantly increased 40 Hz PLF and power for most time bins. Holm-corrected p values were as follows: *$p<0.05$, **$p<0.01$, ***$p<0.001$; $n=44$.