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Introduction

Schizophrenia is a debilitating psychiatric disorder that affects 
approximately 1% of the population worldwide. Its peak age 
of onset is in early adulthood, and it is equally prevalent in ur-
ban and nonurban environments.1 Schizophrenia is diagnosed 
by the presence of specific constellations of symptoms, so the 
diagnosis encapsulates a syndrome of disorders with similar 
clinical presentations.2 While the cause of schizophrenia re-
mains to be elucidated, it has been hypothesized that changes 
in central nervous system (CNS) cholinergic activity contribute 
to the pathophysiology of the disorder.3 Activation of the cho-
linergic system in the human CNS depends on 2 families of re-
ceptors4: muscarinic receptors, which are G-protein coupled, 
and nicotinic receptors, which are ligand-gated ion channels. 
There are 5 muscarinic receptors (CHRM1–5), and a neuro
imaging study and some postmortem CNS studies have 
shown lower levels of muscarinic receptors in the CNS of 
people with schizophrenia.5,6 A number of postmortem studies 
have reported lower [3H]pirenzepine binding to cortical mus-
carinic receptors in people with schizophrenia7,8; [3H]pirenze-

pine is a radioligand that selectively binds to CHRM1 and 
CHRM4.7 Moreover, it has been shown that levels of CHRM1,9 
but not CHRM2, CHRM310 or CHRM4,9 are lower in the cortex 
of people with schizophrenia. All these data suggest that 
people with schizophrenia have lower levels of cortical 
CHRM1, a receptor that is present in high numbers on gluta-
matergic pyramidal neurons but is mostly undetectable on 
GABAergic interneurons.11

Lower [3H]pirenzepine binding has been reported in the 
hippocampi of people with schizophrenia compared with 
controls,12,13 but mRNA data argue that it is levels of CHRM4, 
not CHRM1, that are lower in people with schizophrenia.13 
This differentiation is important, because CHRM1 is postsyn-
aptic in the hippocampus, whereas CHRM4 is pre- and post-
synaptic.14 Thus, cholinergic neurotransmission via projec-
tions from nuclei in the basal forebrain may be disrupted in 
the cortex and hippocampus in people with schizophrenia 
due to changes in different CHRMs. In contrast to findings in 
the cortex and hippocampus, levels of CHRM1 or CHRM4 in 
the thalamus do not differ between schizophrenia and con-
trols.15 This finding suggests that cholinergic transmission 
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through the pedunculopontine-lateral dorsal tegmental pro-
jections of the brainstem into the thalamus may not be af-
fected in people with schizophrenia.

Because the diagnosis of schizophrenia encapsulates a 
syndrome of disorders,2 progress toward understanding 
the pathophysiologies of its component disorders is hin-
dered, at least in studies at the molecular and cellular lev-
els.16 With the concept of schizophrenia as a syndrome, we 
have identified a subset of people with schizophrenia (25%) 
who have a lower (−75%) density of [3H]pirenzepine bind-
ing sites in Brodmann area (BA) 9,17 and we have described 
this subgroup as having a muscarinic receptor deficit form 
of schizophrenia (MRDS). Importantly, under the binding 
conditions in our studies, [3H]pirenzepine binds to CHRM1 
with a specificity greater than 80%,18,19 suggesting that 
levels of CHRM1 are markedly lower in the cortex of 
people with MRDS.

The availability of an anti-human CHRM1 antibody 
suitable for use with the postmortem human CNS20 al-
lowed us to describe the distribution of CHRM1-positive 
(CHRM1+) neurons in the hippocampus.20 We have now 
measured the number of CHRM1+ neurons in postmor-
tem CNS tissue from people with schizophrenia (both 
MRDS and non-MRDS) and controls. We studied BA9 
(dorsolateral prefrontal cortex), because this was the re-
gion where we first identified the subgroup with MRDS.18 

We also measured the distribution of CHRM+ neurons in 
BA17 (primary visual cortex), because the distribution of 
CHRM1 has been reported to differ from that in other cor-
tical regions in primates.21 We also analyzed CHRM1+ 
neurons in the medial dorsal nucleus (MDN) of the thala-
mus (the location of the highest density of CHRM1 in the 
thalamus15) and regions of the hippocampus.

Methods

Collection and processing of human postmortem CNS

We obtained permission from the Ethics Committee of the 
Victorian Institute for Forensic Medicine to collect tissue 
postmortem. All tissue was collected after gaining written 
permission from next of kin. The approaches used to process 
tissue and collect relevant clinical data postmortem have 
been published previously.17,22,23

We obtained BA9, BA17, hippocampus and thalamus 
samples from the right hemisphere of the CNS, fixed in 
10% formaldehyde for at least 2 weeks. We took BA9 from 
a region of the lateral surface of the frontal lobe and in-
cluded the middle frontal gyrus superior to the inferior 
frontal sulcus. We took BA17 from the cortical region con-
taining the band of Gennari and including the banks of the 
calcarine sulcus in the cuneus and lingua gyrus. We took 
hippocampus and thalamus from a coronal slice at the level 
of the lateral geniculate nucleus. After removal from for-
malin, tissue from each case was placed in phosphate- 
buffered saline before being serially sectioned at 50 mm on 
a vibratome and stored in phosphate-buffered saline con-
taining 0.5% sodium azide at 4°C.

Immunohistochemistry

We performed immunohistochemistry using the Vectastain 
ABC peroxidase kit (Vector Laboratories, Inc.) as described 
previously20 (supplementary Methods, Appendix 1, avail-
able at jpn.ca/170202-a1). To avoid processing bias, in each 
region we selected the first section used from each case 
using a random number generator (www.random.org), and 
then sampled every 10th section after the first section. We 
took 5 sections from each case and incubated them with the 
primary antibody. We incubated 1 section without the pri-
mary antibody (negative control) and 1 with rabbit anti-glial 
fibrillary acidic protein antibody (1:4000, DAKO; Z0334; 
batch 20010594) as a positive immune-reaction control. To 
aid in the identification of cortical layers and hippocampal 
regions, we stained 1 section from each case using cresyl vio-
let by placing the section in 0.1% cresyl violet acetate in de-
ionized water for 20 minutes at room temperature, washing 
the section in deionized water, dehydrating the section 
through gradient alcohols, clearing the section in histolene 
and mounting the section in DPX.

We performed cell counting on an Eclipse 80i microscope 
(Coherent Scientific) with Stereo Investigator 10 (SciTec). Af-
ter completing an automatic white balance, regions of interest 
were defined in each section using a 10 × objective. We used 
Stereo Investigator to randomize fields for sampling within 
regions of interest. Each section was stepped serially using 
the optical fractionator, with the section viewed under a   
100 × objective lens with a numerical aperture of 1.4. The op-
tical fractionator was implemented using upper and lower 
guard zones to enable a representative 3D counting frame for 
sampling cells, reducing z-axis bias from cells outside the 
plane of the section. In a similar manner, we used exclusion 
and inclusion boundaries to reduce bias from x- and y-axes. 
The dimensions of the dissectors were z = 12 µm, x = 105 µm 
and y = 52.5 µm. We used the nucleolus of neurons as a sin-
gle point source for inclusion of the cell in all planes to fur-
ther reduce bias in our estimates of cell densities.

We identified CHRM1+ neurons by the presence of clear 
immunopositivity, distinguishable from background, in the 
cell profile. We identified glia on the basis of a lack of stained 
cytoplasm, a more rounded appearance and the presence of 
heterochromatin. We identified neurons by the presence of a 
distinct nucleolus.24

Statistical analysis

We identified group differences using the Student t test or an 
analysis of variance with a post hoc Dunnett test comparison 
to controls. We used Pearson product-moment correlations to 
identify relationships between experimental data and case 
demographics. Pharmacological or tissue collection data with 
strong correlations (r2 > 0.49, p < 0.0525) were an indicator for 
an analysis of covariance, with the appropriate parameters as 
covariates. We compared the frequency of variables in non-
continuous data sets using the Fisher exact test and analyzed 
experimental data to determine whether they were associ-
ated with variations in experimental measures.
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Results

Case demographics, CNS collection and pharmacology

Tissue from the cortex and thalamus was available for all 
cases (Table 1 and Appendix 1, Table S1). There were no sig-
nificant variations in mean age, postmortem interval, CNS 
pH or sex ratio by diagnosis (Table 1). When we divided the 
schizophrenia group into MRDS and non-MRDS subgroups, 
we found no significant variations in mean age, postmortem 
interval, CNS pH or sex ratio. Mean duration of illness, final 
recorded antipsychotic drug dose, frequency of cases ex-
posed to muscarinic receptor antagonists and rates of suicide 
did not differ between people with MRDS and non-MRDS. 
However, in people with schizophrenia at the level of the 
syndrome, and in people with MRDS, levels of [3H]pirenze-
pine binding were lower than in controls (Fig. 1).

Hippocampal tissue was available from only 13 people 
with schizophrenia and 5 controls (Table 1). People with 
schizophrenia were younger than the controls (Table 1), but 
mean postmortem interval, CNS pH and sex ratio did not 
vary by diagnosis. When the schizophrenia group was 
divided into MRDS (n = 6) and non-MRDS (n = 7) subgroups, 
mean age, postmortem interval, CNS pH and sex ratio did 
not vary by group. Mean duration of illness, final recorded 
antipsychotic drug dose, frequency of cases exposed to mus-
carinic receptor antagonists and rates of suicide did not differ 
between people with MRDS and non-MRDS.

Immunohistochemistry

As in the hippocampus,20 immunolabelling was present on 
specific neurons in the cortex (Fig. 1A) and the MDN 
(Fig. 2A). We found no immunolabelling of neurons when the 
anti-CHRM1 antibody was omitted (Fig. 1B). As in the hippo-
campus,20 immunolabelling was diffuse in the cell bodies in 
both the cortex and MDN, consistent with the presence of 
CHRM1 in the cytosol as well as on neuronal membranes.

Compared with controls, the number of CHRM1+ neurons 
was lower in layers III and V of BA9 in people with schizo-
phrenia (−44% and −45%, respectively), MRDS (−54% and 
−57%, respectively) and non-MRDS (−33% and −33%, respec-
tively; Fig. 1D and 1E; see Appendix 1, Table S2, for details of 
full statistical analyses). In BA17, we found lower numbers of 
CHRM1+ neurons in layers III and V from people with 
schizophrenia (−45% and −62%, respectively; Fig. 1F and 1G; 
Appendix 1, Table S2). In layer III, the number of CHRM1+ 
neurons was lower in people with MRDS (−62%), but not in 
people with non-MRDS (−28%), whereas in layer V the num-
ber of CHRM1+ neurons was lower in people with MRDS 
(−79%) and non-MRDS (−45%; Appendix 1, Table S2). The 
total number of neurons or glia in BA9 and BA17 did not dif-
fer between controls and people with schizophrenia, MRDS 
or non-MRDS (Fig. 1D to G; Appendix 1, Table S2). We also 
completed a post hoc power analysis of data on CHRM1+ 
cells in layer III in BA17 from people with non-MRDS and 
controls, which showed that if there had been 53 cases in 
each cohort, the difference in numbers of CHRM1+ neurons T
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Fig. 1: (A) A photomicrograph showing anti-muscarinic M1 receptor antibody immunolabelled cells in Brodmann area 9 
(arrows highlighting CHRM+ neurons). (B) An adjacent tissue section that was treated identically but not exposed to the 
anti-muscarinic M1 receptor antibody. (C) Levels (mean ± SEM) of [3H]pirenzepine binding to Brodmann area 9 for the 
cases included in this study that were part of a larger published cohort.17 (D–G) Levels (mean ± SEM) of CHRM1+ neur
ons, total neurons and total glia in (D) layer III and (E) layer V in Brodmann area 9 and (F) layer III and (G) layer V in 
Brodmann area 17 from people with schizophrenia, a subgroup of people with MRDS and people with schizophrenia who 
did not have that deficit (non-MRDS). a = p < 0.05, b = p < 0.01, c = p < 0.001, d = p < 0.0001. CHRM+ = muscarinic M1 
receptor–positive; MRDS = muscarinic receptor deficit form of schizophrenia; SEM = standard error of the mean.
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could have reached a significance of p < 0.05. This raised the 
possibility that the absence of change in CHRM1+ neurons in 
BA17 from people with non-MRDS could have been due to a 
lack of power in this study.

We focused our studies on the MDN, where there was a 
sufficient number of CHRM1+ neurons to give meaningful 
counts. We found no differences in numbers of CHRM1+ 
neurons, total neurons or total glia between patient groups 
and controls (Fig. 2B; Appendix 1, Table S2).

In the hippocampus, the density of cells in the molecular 
layer of the dentate gyrus made identifying and counting 
CHRM1+ neurons impossible. In the cornu ammonis (CA) 1, 
CA2, CA3 and the polymorphic layer of the dentate gyrus, 
we found no differences in number of CHRM1+ neurons 
(Fig. 2 C to F; Appendix 1, Table S2). The total number of 
neurons — but not total glia — was higher (+19%) in CA1 
from people with schizophrenia, but not in MRDS or non-
MRDS. In contrast, the number of total neurons and total glia 
did not differ between groups in CA2, CA3 or the polymor-
phic layer of the dentate gyrus.

Potential confounders

In the hippocampi of men, the total number of neurons was 
lower in the polymorphic layer of the dentate gyrus (−22%), 
CA2 (−18%) and CA1 (−13%), but the total number of glia was 
higher in the polymorphic layer of the dentate gyrus (+ 13%; 

Table 2). However, given the low number of cases from which 
hippocampus was available, this finding must be viewed as 
preliminary. This is particularly the case because power analy-
ses suggested that larger cohorts could have resulted in find-
ings of lower CHRM1+ neurons in people with MRDS and 
non-MRDS in all regions but CA1 (Appendix 1, Table S4).

In the MDN, the numbers of CHRM1+ neurons and total 
neurons were lower (−28%) in people with schizophrenia 
who died by suicide (n = 7) than in those who died of other 
causes (n = 17; Table 2).

We observed some associations between experimental data 
and demographic, CNS collection or pharmacological data 
where the best fit linear regression deviated significantly from 
zero, but none of these was of sufficient strength to warrant a 
secondary analysis (Appendix 1, Table S3). 

In addition, when comparing results from people with 
schizophrenia who had or had not been treated with anticho-
linergic drugs, we found no differences in the levels of 
CHRM1+ neurons, total neurons or total glia in layer III or 
layer V in BA9 or BA17 (Table 3).

Discussion

We have reported lower levels of CHRM1+ neurons in layer III 
and layer V in the BA9 and BA17 of people with schizophrenia 
compared with controls, but no significant differences in the 
number of CHRM1+ neurons in the MDN or in CA1, CA2, CA3 

Fig. 2: (A) A photomicrograph showing antimuscarinic M1 receptor antibody immunolabelled cells in the medial dorsal nucleus (arrows 
highlighting examples of CHRM+ neurons). (B–F) Levels (mean ± SEM) of CHRM1+ neurons, total neurons and total glia in (B) the medial 
dorsal nucleus, (C) the polymorphic layer of the dentate gyrus, (D) CA1, (E) CA2 and (F) CA3 from people with schizophrenia, a subgroup 
of people with MRDS and people with schizophrenia who did not have that deficit (non-MRDS). a = p < 0.05. CHRM1+ = muscarinic M1 
receptor–positive; MRDS = muscarinic receptor deficit form of schizophrenia; SEM = standard error of the mean.
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or the polymorphic layer of the dentate gyrus in the hippocam-
pus. Given that CHRM1 is a potent regulator of cholinergic ac-
tivity in the mammalian cortex,26 our data suggest widespread 
dysregulation of cortical cholinergic functioning in people with 
schizophrenia. We know that CHRM1s are found predomi-
nantly on pyramidal cells in layers III and V of the cortex, where 

they are involved in cell-autonomous molecular alterations in 
layer III pyramidal cells, a process that is thought to be affected 
in people with schizophrenia and a contributor to cortical 
GABAergic dysfunction.27 This could mean that CHRM1 on 
layer III pyramidal cells causes changes in the glutamatergic 
control of GABAergic neurons in people with schizophrenia.28

Table 2: The effect of sex and suicide (schizophrenia only) on levels of muscarinic receptor–positive neurons, total neurons and total glia in 
Brodmann areas 9 and 17, medial dorsal nucleus and regions of the hippocampus*

Region Layer

Sex Suicide

Male Female t d.f. p value Suicide Non-suicide t d.f. p value

BA9 Layer III CHRM1+ 
neurons 

841 ± 77 680 ± 158 1.00 34 0.32 510 ± 116 697 ± 81 1.28 22 0.21

Total neurons 1392 ± 70 1604 ± 37 1.70 34 0.10 1407 ± 117 1422 ± 98 0.09 22 0.93

Total glia 2187 ± 156 2438 ± 103 0.89 34 0.37 2008 ± 267 2290 ± 214 0.75 22 0.46

Layer V CHRM1+ 
neurons

1016 ± 98 882 ± 175 0.68 34 0.50 624 ± 151 817 ± 99 1.06 22 0.30

Total neurons 1541 ± 58 1566 ± 73 0.22 34 0.82 1407 ± 70 1525 ± 59 1.14 22 0.27

Total glia 2172 ± 136 2391 ± 80 0.91 34 0.36 2191 ± 263 2152 ± 161 0.13 22 0.90

BA17 Layer III CHRM1+ 
neurons

805 ± 101 543 ± 137 1.35 34 0.18 578 ± 200 547 ± 80 0.17 22 0.86

Total neurons 1701 ± 87 1629 ± 91 0.45 34 0.66 1590 ± 257 1662 ± 96 0.75 22 0.74

Total glia 2355 ± 166 2671 ± 114 1.06 34 0.30 2135 ± 396 2421 ± 197 0.72 22 0.48

Layer V CHRM1+ 
neurons

473 ± 83 354 ± 109 0.75 34 0.45 335 ± 73 254 ± 34 0.26 22 0.26

Total neurons 1312 ± 64 1192 ± 64 1.02 34 0.32 1320 ± 158 1197 ± 66 0.86 22 0.40

Total glia 2297 ± 64 2896 ± 191 1.96 34 0.06 2180 ± 453 2471 ± 192 0.7 22 0.49

MDN CHRM1+ 
neurons

478 ± 45 454 ± 45 0.58 34 0.56 374 ± 21 502 ± 23 3.33 22 0.003

Total neurons 596 ± 30 544 ± 52 0.88 34 0.39 477 ± 34 619 ± 37 2.26 22 0.03

Total glia 2777 ± 170 2847 ± 266 0.22 34 0.83 2438 ± 331 3054 ± 2303 1.47 22 0.15

Hippocampus CA3 CHRM1+ 
neurons

193 ± 33 155 ± 52 0.62 16 0.540 213 ± 72 132 ± 32 1.20 11 0.25

Total neurons 350 ± 12 379 ± 14 1.33 16 0.200 363 ± 20 349 ± 13 0.59 11 0.56

Total glia 1477 ± 56 1315 ± 185 1.13 16 0.270 1416 ± 180 1396 ± 95 0.11 11 0.91

CA2 CHRM1+ 
neurons

153 ± 35 179 ± 63 0.37 16 0.720 151 ± 36 129 ± 40 0.33 11 0.75

Total neurons 441 ± 37 534 ± 37 2.84 16 0.010 452 ± 35 465 ± 29 0.27 11 0.79

Total glia 1647 ± 52 1462 ± 154 1.48 16 0.160 1584 ± 176 1581 ± 85 0.01 11 0.99

CA1 CHRM1+ 
neurons

44 ± 8.1 27 ± 12 1.12 16 0.280 36 ± 16 33 ± 8.9 0.17 11 0.86

Total neurons 384 ± 15 442 ± 23 4.53 16 0.0003 440 ± 13 410 ± 21 0.38 11 0.39

Total glia 1096 ± 46 959 ± 90 0.16 16 0.160 1057 ± 81 1100 ± 66 0.38 11 0.71

Poly CHRM1+ 
neurons

116 ± 20 117 ± 39 0.01 16 0.990 110 ± 45 94 ± 22 0.36 11 0.72

Total neurons 210 ± 11 272 ± 16 2.96 16 0.009 223 ± 28 237 ± 17 0.43 11 0.68

Total glia 1579 ± 66 1393 ± 112 3.19 16 0.006 1576 ± 159 1467 ± 72 0.73 11 0.48

BA = Brodmann area; CA = cornu ammonis; CHRM1+ = muscarinic M1 receptor–positive; MDN = medial dorsal nucleus; poly = polymorphic layer of the dentate gyrus; SEM = standard 
error of the mean.
*All data listed as mean ± SEM of cells per mm3 × 10–2.
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Pyramidal cells in layer V of the cortex receive axonal 
input from the cortex and have projections to regions such 
as the midbrain, the basal ganglia of the forebrain and the 
spinal cord. Hence, our data also support the notion that a 
loss of CHRM1 on layer V pyramidal cells deranges the 
cortical/subcortical circuitry that is postulated to occur in 
people with schizophrenia.29

This study uniquely examines the number of CHRM1+ 
neurons in people with MRDS who have significantly lower 
levels of [3H]pirenzepine binding to CHRM1 + CHRM47 
compared with controls and non-MRDS. We have shown 
that people with MRDS have lower levels of CHRM1+ neur
ons in layers III and V of BA9 and BA17, but not in the MDN 
or the hippocampus. In people with non-MRDS, levels of 
CHRM1+ neurons were lower in layers III and V in BA9 and 
layer V in BA17, but not in layer III of BA17, MDN or the 
hippocampus. Notably, we found no difference in the total 
number of neurons in BA9 or BA17 from people with MRDS 
and non-MRDS. In MRDS, these data were consistent with 
the concept of fewer neurons expressing CHRM1 rather than 
a loss of CHRM1+ neurons through degenerative processes. 
In non-MRDS, it would seem most likely that while fewer 
neurons expressed CHRM1, the CHRM1+ neurons made 
enough receptors that CHRM1 receptor density, as meas
ured by [3H]pirenzepine binding, did not differ from con-
trols. Predicting the functional outcomes of these changes is 
more difficult, but it is possible that in MRDS there is a defi-
cit in cholinergic signal amplitude because of a lack of 
CHRM1, and a loss of cholinergic modulation of pyramidal 
cell activity because more of these cells appear to lack 
CHRM1. In contrast, if fewer CHRM1+ neurons are express-
ing higher levels of CHRM1s in the cortices of people with 
non-MRDS, this could result in a higher cholinergic signal 
amplitude on the pyramidal cells that express CHRM1 and 
an absence of cholinergic signalling on pyramidal cells that 

do not. This could result in a different pattern of CHRM1+ 
signalling in the cortex of people with non-MRDS and may 
have subtle effects on cholinergic activity that could still affect 
cortical function.

We found no changes in total numbers of neurons or glia 
in layers III or V in BA9 and BA17 from people with schizo-
phrenia, MRDS or non-MRDS. These data showed some 
similarities to a study that reported lower levels of glutamic 
acid decarboxylase–expressing neurons with no change in 
total neuron count in the cortex of people with schizophre-
nia.30 Another study has reported lower neuronal density in 
layer VI in the prefrontal cortex, layer V of the cingulate cor-
tex and layer III of the motor cortex,31 suggesting that neur
onal loss may be cortical layer × region–specific. Our findings 
do not contradict this hypothesis, but argue that there is no 
change in neuronal density in layers III and V in BA9 and 
BA17, consistent with a study reporting no loss of neuronal 
density on layers III and V in BA9 from people with schizo-
phrenia.32 In contrast, our findings do not agree with a study 
that reported an increase in neuronal density in BA9 and BA17 
from people with schizophrenia.33

We found no significant difference in the number of 
CHRM1+ neurons in the MDN of people with MRDS or 
non-MRDS, adding to the data showing no change in levels 
of [3H]pirenzepine binding in the thalamus of people with 
schizophrenia.15 This suggests that the thalamus is spared 
the loss of CHRM1s and CHRM1+ neurons. As in a previ-
ous study,34 we failed to show any changes in neuronal or 
glial density in the MDN of people with schizophrenia.

This study showed no change in the number of CHRM1+ 
neurons in CA1, CA2, CA3 and the polymorphic layer of the 
dentate gyrus from people with schizophrenia, MRDS or 
non-MRDS. However, this finding must be regarded as pre-
liminary because of the small number of cases for which we 
had suitable hippocampal tissue. However, at present our 

Table 3: Levels of CHRM1+ neurons, total neurons and total glia in layers III and V in Brodmann areas 9 and 17 from people 
with schizophrenia who had or had not been prescribed anticholinergic medication in life

Cortical region Cortical layer
Anticholinergic,  

mean ± SEM (n = 11)
No anticholinergic,  

mean ± SEM (n = 13) t* p value

BA9 III CHRM1+ neurons 586 ± 119 683 ± 81 0.70 0.49

Total neurons 1437 ± 126 1403 ± 97 0.22 0.83

Total glia 2421 ± 246 2055 ± 229 1.07 0.30

V CHRM1+ neurons 616 ± 134 863 ± 101 1.50 0.15

Total neurons 1497 ± 64 1486 ± 68 0.12 0.91

Total glia 2264 ± 176 2092 ± 195 0.62 0.54

BA17 III CHRM1+ neurons 429 ± 53 664 ± 133 1.53 0.14

Total neurons 1655 ± 124 1629 ± 152 0.13 0.90

Total glia 2458 ± 227 2235 ± 272 0.62 0.54

V CHRM1+ neurons 236 ± 32 314 ± 52 1.22 0.24

Total neurons 1201 ± 85 1259 ± 98 0.44 0.66

Total glia 2531 ± 249 2263 ± 274 0.71 0.48

BA = Brodmann area; CHRM1+ = muscarinic M1 receptor–positive; SEM = standard error of the mean.
*Degrees of freedom = 22.
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data on CHRM1+ neurons in people with MRDS and non-
MRDS would support the argument that lower levels of 
CHRM4 are causing decreased [3H]pirenzepine binding in 
the hippocampus of people with schizophrenia.13 We did 
find a small (19%) but significant increase in total neurons in 
CA3 of people with schizophrenia that was not apparent 
when we divided the group into MRDS and non-MRDS sub-
groups. These data partly replicate a previous study that 
found increased neuronal density in CA3 and CA1 of people 
with schizophrenia.35

We also found lower numbers of CHRM1+ neurons and 
total neurons in the MDN of people who died by suicide com-
pared with those who died of other causes. Notably, we did 
not observe changes in [3H]pirenzepine binding in the MDN 
or other regions of the thalamus from people who died by sui-
cide compared with death from other causes.15 Hence, al-
though the thalamus is a CNS region of interest with respect 
to suicidal ideation,36 our data were unclear about whether 
changes in CHRM1-mediated activity in the thalamus may 
contribute to a propensity for suicidal ideation.

Limitations

Our study had some limitations, but they did not include the 
use of an antibody that lacks specificity for CHRM1, which is 
a concern for some anti-muscarinic M1 receptor antibodies.20 
Our findings in the hippocampus are preliminary because of 
relatively small cohort sizes. In addition, like all studies that 
include living or dead people with schizophrenia who have 
been treated, it is possible that changes may have been due to 
antipsychotic drug treatment. While we7,12 and others37,38 
have shown that treating rats with antipsychotic drugs does 
not lower levels of cortical or hippocampal [3H]pirenzepine 
binding, we are aware of no studies that examine the density 
of CHRM1+ neurons after such treatment. However, treating 
rats with muscarinic receptor antagonists does not affect cor-
tical [3H]pirenzepine binding.7 In addition, there was no dif-
ference in levels of CHRM1+ neurons, total neurons or total 
glia in people with schizophrenia who had received anticho-
linergic drugs compared to those who had not been treated 
with such drugs, supporting the notion that treatment with 
that class of drugs does not decrease levels of CHRMs.

Conclusion

Our human data and studies of mammalian cortex show that 
CHRM1s are located primarily on pyramidal neurons,11 
which are strongly innervated by cholinergic neurons.39 

These pyramidal cells are important in regulating mental 
representations that subserve higher cognitive processing,40

and cortical CHRM1s are critical in maintaining cognitive 
function in humans.41 Thus, while activating cortical CHRM1 
with orthosteric or allosteric modulators could provide thera-
peutic benefits in people with schizophrenia,42,43 the loss of 
cortical CHRM1s and CHRM1+ neurons in BA9 and BA17, 
and possibly other areas of the cortex, could have serious im-
plications for the ability of such drugs to help normalize cho-
linergic neurotransmission in people with schizophrenia, 

particularly MRDS. Adding to these concerns are our data 
showing that cortical tissue from people with MRDS (com-
pared with control and non-MRDS) is less responsive to 
CHRM1 orthosteric agonists44 and positive allosteric modula-
tors.45 Therefore, a neuroimaging test to identify people with 
low levels of muscarinic receptors before treatment with 
muscarinic-receptor-activating drugs may help to show 
whether low levels of CHRM are associated with resistance 
to treatment with CHRM1-targeting drugs.

Our data showing lower levels of cortical CHRM1+ neur-
ons in people with schizophrenia adds weight to the hypothe-
sis that abnormalities in cortical pyramidal cell activity in cor-
tical layers III and V contributes to the pathophysiology of the 
disorder. Because CHRM1s41 and cortical pyramidal cells21 are 
important in maintaining cognitive function, we hypothesize 
that the loss of cortical CHRM1+ neurons likely contributes to 
the cognitive deficits experienced by many people with 
schizophrenia.46 In addition, CHRM1s in BA17 are important 
in modulating visual attributes such as form, position and 
motion40; our findings on the loss of CHRM1+ neurons in that 
cortical region in people with schizophrenia could suggest ab-
normalities in assigning visual attributes and may be a con-
tributing factor to the visual-related symptoms associated 
with the disorder.
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