
DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

1 **Supplemental Materials**

2 **SM 1 Methods**

3 **SM 1.1 Participants**

AN participants were recruited from specialized eating disorder programs of a university child and adolescent psychiatry and psychosomatic medicine department and diagnosed according to DSM-5 criteria using semi-structured clinical interviews. Comorbid psychiatric diagnoses were made by an expert clinician and included examination of the participant and careful chart review (including medical and psychiatric history, physical examination, laboratory values and several psychiatric screening instruments). The AN participants were amenorrheic with two exceptions: One patient took oral contraceptives; thus the natural menstrual cycle could not be evaluated and the other continued to maintain a menstrual cycle.

Exclusion criteria and possible confounding variables, e.g. the use of psychotropic medications and medical comorbidities, were obtained using the SIAB-EX and our own semi-structured interview.

HC participants were excluded if they had any history of psychiatric illness, a lifetime BMI below the 10th age percentile (if younger than 18 years) or BMI below 18.5kg/m² (if older than 18 years), or were currently obese (BMI not over 94th age percentile if younger than 18 years; BMI not over 28kg/m² if older than 18 years). Participants of all study groups were excluded if they had a lifetime history of any of the following clinical diagnoses: organic brain syndrome, schizophrenia, substance dependence, psychosis NOS, bipolar disorder, bulimia nervosa or binge-eating disorder (or “regular” binge eating - defined as bingeing at least once weekly for three or more consecutive months). Further exclusion criteria for all participants were IQ lower than 85; psychotropic medication other than SSRI within four weeks prior to the study; current substance abuse; current inflammatory, neurologic or metabolic illness; chronic medical or neurological illness that could affect appetite, eating behavior, or body weight (e.g., diabetes); clinical relevant anemia; pregnancy; breast feeding.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

1 Pairwise case-control age-matching was carried out using the Munkres algorithm\(^1\) resulting in a maximum difference of 1.6 years between the individuals within one pair. 24 AN participants and 20 HC were already included within the sample of Boehm et al.\(^2\)

2 Study data were managed using secure, web-based electronic data capture tools REDCap (Research Electronic Data Capture)\(^3\).

3 **SM 1.2 Bisulfite Pyrosequencing Protocol**

4 Genomic DNA was bisulfite treated using the EZ DNA Methylation Gold Kit (Zymo Research, Range, CA, USA). One amplicon (fragment 5HTT_P3 as described in Wankerl et al.\(^4\)) was generated from bisulfite-treated DNA. PCR protocol was run as follow: HotStarTaq polymerase (Qiagen, Hilden, Germany) 95°C 15', 49x (95°C 35'', 52°C 35'', 72°C 35''); 72°C 5'. Sample preparation was carried out using Vacuum Prep Tool according to standard procedures. 12-15μl PCR product was immobilized to 2μl Streptavidin Sepharose™ HP beads (GE Healthcare) followed by annealing to 0.8-1.0μl sequencing primer (5μM) for 2' at 80°C. Amplicon and sequencing primers are depicted in Table SM 1.2a.

<table>
<thead>
<tr>
<th>TYPE OF PRIMER</th>
<th>NAME OF PRIMER</th>
<th>PRIMER SEQUENCE (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORWARD</td>
<td>5HTT-F</td>
<td>ggg gaa gta tta tta t</td>
</tr>
<tr>
<td>REVERSE</td>
<td>5HTT-R</td>
<td>Biotin-ccc cta caa caa taa aca</td>
</tr>
<tr>
<td>SEQUENCING</td>
<td>5HTT-S1new</td>
<td>att tag aga tta tat tat tga</td>
</tr>
</tbody>
</table>

5 Table SM 1.2a: Primers used for bisulfite pyrosequencing of parts the SLC6A4 promoter-associated CpG island; All primers refer to bisulfite treated DNA.

6 A sequence within the SLC6A4 promoter-associated CpG island as previously described by Philibert et al.\(^5\) (GenBank accession number: NG_011747) is shown in Table SM 1.2b. We focused on 15 CpG sites within the amplicon 3 of a 799-bp promoter region (originally CpG 43-57, referred to in the current study as CpG 1-15)\(^6\). CpG sites analyzed by means of bisulfite pyrosequencing are numbered and base pair positions are depicted according to the NCBI genome browser on the left hand side.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Table SM 1.2b: Sequence of the SLC6A4 promoter–associated CpG island

|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|
| Cgtttgcccggctatctagatcagaccatatgtgagggcccgtggtacaaataaggtgccagcggagggggccgtagagatcagaccatgtgagggccc | cccctccg8cagccagcgccggcgggacccacgctccccggttcctggtgctttccc | cctgcccagccgccgtgggagccagcctcccccgcgcagcctggcaggtgggtccctttccc | cgtttggcccggctatctagatcagaccatatgtgagggcccgtggtacaaataaggtgccagcggagggggccgtagagatcagaccatgtgagggccc | cccctccg8cagccagcgccggcgggacccacgctccccggttcctggtgctttccc | cctgcccagccgccgtgggagccagcctcccccgcgcagcctggcaggtgggtccctttccc

Figure SM 1.2a: Boxplots showing DNA methylation levels for each of the 14 investigated CpG sites across groups. The box includes methylation values for each CpG site between 25th - 75th quantile (median ± 1 interquartile range), the whiskers represent the range of estimates within 1.5-fold of the interquartile range.

Correlation between methylation sites were varied (mean pairwise correlations between CpGs=0.31; Figure SM 1.2b). Inspection of transcription factor binding site information, based on ENCODE data, indicated that most binding sites covered the whole region from Cpg1-14 (Figure SM 1.2c) justifying the approach of averaging across CpG sites which has been used here and in previous reports on the SLC6A4 promoter region.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Figure SM 1.2b. Covariance plot between all 14 CpG sites.

Figure SM 1.2c.: Transcription factor binding sites (horizontal bars in lower panel) covered the whole genomic region investigated (within vertical red bars), based on ENCODE data. Figure produced via the UCSC Genome Browser (access date: May 24th 2019).

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

1.3 fMRI data acquisition

The parameters of the rapid acquisition gradient echo (MP-RAGE) sequence were the following: number of slices=176; repetition time=1900ms; echo time=2.26ms; flip angle=9°; slice thickness=1mm; voxel size=1x1x1mm³; field-of-view=256x224mm²; bandwidth=2004Hz/pixel.

The parameters of the gradient-echo T2*-weighted echo planar imaging (EPI) were the following: tilted 30° towards AC–PC line (to reduce signal dropout in orbitofrontal regions); number of volumes=190; number of slices=40; repetition time=2200ms; echo time=30ms; flip angle (FA) of 75°; 3.4mm in-plane resolution; slice thickness of 2.4mm (1mm gap resulting in a voxel size of 3.4x3.4x2.4mm³); FoV=220x220mm²; bandwidth of 200Hz/pixel.

1.4 fMRI data preprocessing

The applied standard image data preprocessing procedure included slice time correction of the functional data, realignment and registration to the mean. The realigned files were coregistered to the subject's structural brain image. A DARTEL template was created using structural images from all subjects. The EPI volumes were then normalized to MNI space using the DARTEL template and corresponding flow field. The resulting data were smoothed with an isotropic 8mm FWHM Gaussian kernel. The quality of the fMRI data was evaluated by manual inspection and by using artifact detection tools (ART).

1.5 Independent component analysis

Spatial group independent component analysis was conducted to extract 24 temporally coherent networks.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Figure SM 1.5: Spatial maps of the 24 extracted independent components; Selected slices of all 24 independent components; IC=independent component.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

1.6 Identification of components of interest

Components of interest were identified by spatial correlation with the relevant templates by Yeo et al.\(^9\). Two components (IC9 and IC13) were identified as SN, while the visual network (IC7) was employed as negative control.

Figure SM 1.6: Spatial maps of the independent components; Selected slices of spatial maps of the two identified independent components that showed significant spatial correlation with the SN template \(^9\) and the visual network as negative control network; IC=independent component, vRSN=visual resting state network; spatial maps are plotted as t-statistics thresholded at \(p=0.05\) (FWE).

SM 2 Results

2.1 Group x methylation\(_{CpG13}\) interaction

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Investigating the group x methylation\textsubscript{CpG13} interaction with age as a covariate revealed a significant finding at the right dIPFC ($t=4.73$; $p=0.014$ (FWE)).

Figure SM 2.1: Group x SLC6A4 methylation\textsubscript{CpG13} interaction; Significant group x SLC6A4 methylation\textsubscript{CpG13} interaction at the right dIPFC, for visualization purpose displayed at a threshold of $p=0.001$ (uncorrected); color bar represents t-values.

2.2 Group x methylation\textsubscript{mean} interaction at a lower threshold

When lowering the threshold to $p=0.05$ (uncorrected) the finding appears in both hemispheres.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Figure SM 2.2: Group x SLC6A4 methylation\textsubscript{mean} interaction at p=0.05 (uncorrected); Group x SLC6A4 methylation\textsubscript{mean} interaction at the left and right dIPFC, for visualization purpose displayed at a threshold of p=0.05 (uncorrected); color bar represents t-values.

2.3 Group x SLC6A4 methylation\textsubscript{mean} and the fronto-parietal network

In order to specify whether our finding of a significant group x SLC6A4 methylation\textsubscript{mean} interaction at the dIPFC exclusively constitutes a methylation-dependency of the frontal-limbic circuit (reflected by the SN), we also conducted post-hoc tests of the group x SLC6A4 methylation\textsubscript{mean} interaction in the fronto-parietal network. The fronto-parietal network is also anchored by the dIPFC, but in contrast to the SN is characterized by synchronized activity with parietal brain regions instead of subcortical limbic regions. Results showed no group x SLC6A4 methylation\textsubscript{mean} interaction.
2.4 Mediation analysis

Figure SM 2.3: Mediation analysis between SCL6A4 methylation$_{\text{mean}}$ and EDI-2 total with rsFC of the SN as mediator; Unstandardized coefficients and standard error are displayed; *significant with p<0.05; rsFC=resting state functional connectivity; SN=salience network; EDI-2 total=eating disorder inventory; SCL6A4 methylation$_{\text{mean}}$=mean SLC6A4 methylation score

2.6 Analysis of genetic influences

To investigate whether our findings were driven by underlying methylation quantitative trait loci, we queried two different databases. mQTL.org is a catalogue of the genetic influences on DNA methylation in human blood, based on samples of 1018 mother-child pairs at five different life stages. Brain-based mQTLs are described in a data catalogue hosted on epigenetics.essex.ac.uk.mQTL, based on a collection (n=166) of human fetal brain samples spanning 56-166 days post-conception.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

<table>
<thead>
<tr>
<th>SM 3 List of selected task-based fMRI studies reporting insula dysfunction in AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
</tr>
<tr>
<td>Bär et al.</td>
</tr>
<tr>
<td>Bischoff-Grethe et al.</td>
</tr>
<tr>
<td>DeGuzman et al.</td>
</tr>
<tr>
<td>Frank et al.</td>
</tr>
<tr>
<td>Frank et al.</td>
</tr>
<tr>
<td>Holsen et al.</td>
</tr>
<tr>
<td>Kerr et al.</td>
</tr>
<tr>
<td>Kerr et al.</td>
</tr>
<tr>
<td>Leppanen et al.</td>
</tr>
</tbody>
</table>

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Journal</th>
<th>Study Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberndorfer et al.</td>
<td>2013</td>
<td>Am. J. Psychiatry</td>
<td>Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa.</td>
</tr>
<tr>
<td>Oberndorfer et al.</td>
<td>2013</td>
<td>Psychiatry Res</td>
<td>Greater anterior insula activation during anticipation of food images in women recovered from anorexia nervosa versus controls.</td>
</tr>
<tr>
<td>Strigo et al.</td>
<td>2013</td>
<td>Int J Eat Disord</td>
<td>Altered insula activation during pain anticipation in individuals recovered from anorexia nervosa: evidence of interoceptive dysregulation.</td>
</tr>
<tr>
<td>Wagner et al.</td>
<td>2007</td>
<td>Neuropsychopharmacology</td>
<td>Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa.</td>
</tr>
</tbody>
</table>

Table 3: Selected task-based fMRI studies reporting insula dysfunctions in AN

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

References

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

DOI: 10.1503/jpn.190016

© Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

