Supplemental Materials

Participant Information

One hundred fifty-four patients diagnosed with a psychotic spectrum disorder (PSD; 96 males, 32.00±9.28 years old) were consecutively recruited in this Research Domain Criteria (RDoC) study. Patients, recruited from local psychiatric centers and newspaper ads, were diagnosed with a psychotic spectrum disorder by a board-certified psychiatrist using the Structured Clinical Interview for DSM-IV-TR (SCID-II). A total of 65 healthy controls (HC) (41 males, 33.25±8.15 years old) were recruited from the local community through informal oral correspondence and public fliers.

Clinical and Neuropsychological Assessments

All participants completed the Wechsler Test of Adult Reading (WTAR), the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB), the Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (EXAMINER), the Edinburgh Handedness Inventory (EHI), a 60-day Timeline Followback (TLFB), and a medical history form and the Fagerstrom Test for Nicotine Dependence (FTND). Everyday functioning was assessed with the UCSD Performance-Based Skills Assessment Brief Version (UPSA-B) and the Quality of Life Questionnaire in Schizophrenia 18 (S-QoL 18). All participants also completed a form detailing recent caffeine intake, cigarette consumption, alcohol consumption and sleep for the 24 hours prior to scan. Participants were asked to refrain from smoking for at least one hour prior to their appointment and CO levels were monitored with a Vitolograph BreathCO Monitor for all smokers.

PSD completed additional clinical instruments, which included the Positive and Negative Syndrome Scale (PANSS), Schizo-Bipolar Scale (SBS) and Clinical Global Impressions Scale (CGI). Extrapyramidal symptoms were assessed with the Abnormal Involuntary Movement Scale (AIMS), Barnes Akathisia Scale (BAS) and a modified Simpson Angus Scale (SAS). PSD family members were also contacted whenever available to complete a modified version of the Specific Levels of Functioning Informant Scale (SLOF-I). Finally, an olanzapine equivalence metric was calculated for all patients to determine medication load.

AX-CPT Practice Parameters

Prior to entering the scanner, participants received active instructions with examples of cue-probe conditions and expected target/non-target responses. This was followed by up to three blocks of practice trials for the task. Practice consisted of maximum trial counts of AX=9, AY=12, BX=6, BY=3. Note that this proportion of conditions (AX=30%; AY=40%; BX=20%; BY=10%) was intentionally different from the standard AX-CPT proportions, ensuring that participants were exposed to enough non-target conditions to ensure that they understood the task while minimizing overtraining. All participants were eventually scanned regardless of performance following RDoC conventions.
Imaging Protocol and Preprocessing

High resolution 5-echo multi-echo Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) T_1 [repetition time (TR)=2530ms; echo times (TE)=1.64, 3.5, 5.36, 7.22, 9.08ms; inversion time (TI)=1200ms; flip angle=7°; number of excitations (NEX)=1; slice thickness=1mm; field of view (FOV)=256mm; matrix size=256 \times 256; isotropic voxels=1mm] were collected for structural images on a 3T Siemens Trio Tim scanner. Echo-planar images were collected for four runs of the AX-CPT task using a single-shot, gradient-echo echoplanar pulse sequence with simultaneous multi-slice technology [TR=460ms; TE=29ms; flip angle=44°; multiband acceleration factor=8; NEX=1; slice thickness=3mm; FOV=248mm; matrix size=82 \times 82; 56 interleaved slices; 3.02 \times 3.02 \times 3.00mm voxels]. The first three images of each run were eliminated to account for T_1 equilibrium effects, resulting in 3116 images in final analysis of the AX-CPT. A single band reference image (SBREF) was also acquired to facilitate registration with the T_1 image. Two EPI distortion mapping pre-scan sequences [TR=7220ms; TE=73ms; flip angle=90°; refocus flip angle=180°; slice thickness=3mm; FOV=248mm; matrix size=82 \times 82; 56 interleaved slices; 3.02 \times 3.02 \times 3.00mm voxels] with reversed phase encoding directions (A \rightarrow P; P \rightarrow A) were also collected to correct for susceptibility related artifacts in the task data.

Anomalous time-series data were first identified and replaced based on values from the previous and subsequent image using AFNI’s despiking protocol. All time-series data were then temporally interpolated to the first slice for slice acquisition differences, spatially registered in two- and three-dimensional space to the EPI reference image to reduce the effects of head motion. Mean frame-wise displacement (FD) was calculated across 3 rotational motion parameters and 3 displacement parameters. Susceptibility field distortion was estimated and corrected using FSL Topup. Task data were converted to standard stereotaxic coordinate space using a non-linear algorithm (AFNI 3dQwarp) and spatially blurred (6-mm Gaussian FWHM filter). A voxel-wise deconvolution analysis generated a single hemodynamic response function for each trial-type relative to the baseline state (visual fixation plus gradient noise) based on the first 14.26 seconds post-stimulus onset. Error trials were modelled separately for each trial-type to eliminate error variance.

Behavioral Index Measures

To test within-group equality of variance across specified contrasts, Pitman-Morgan tests were used to generate a correlation coefficient between the sum (e.g., Cue A + Cue B) and difference (e.g., Cue A – Cue B) across conditions. The correlation term was then transformed using Fisher’s r-to-z to assess between group differences. The d’-index was calculated [z(AX-Hits) – z(BX-False Alarms)] to determine participants contextual sensitivity to cue information influencing responses to the probe, while the behavioral shift index (BSI; AY-BX/AY+BX) was calculated to determine if a proactive (BSI > 0) or reactive (BSI < 0) cognitive control strategy was being employed during specific conditions (Supplemental Table 1).
Simulation of delayed Hemodynamic response functions (HRF)

Simulations with HRFs were performed in AFNI19 to assess the effect of delayed hemodynamic activity on estimated group differences. Event timing was based on the pseudorandom presentation of AX probes, and AFNI’s 3dDeconvolve was used to model expected neural response with a double gamma variate function. In addition to this unshifted function, a family of offsets (every 460 ms [1 TR] between 460-4,600) was applied to create delayed neural response files. Realistic noise was generated for all unshifted and shifted simulated data separately using AFNI’s 1dgenARMA11, which models noise with an autoregressive moving average model (ARMA). The standard deviation (SD=0.3) of the noise model was selected to mimic what would be commonly seen for average neural response in the sensorimotor cortex (see Figure 3B). After noise addition, 3dfim+ was used to determine the β coefficient of each simulated signal to the ideal double gamma response function. This process was repeated 100 times, modeling noise separately for all repetitions. Next, jackknife resampling (1000 permutations) across samples of 20 to 100 was performed to indicate the percentage of significant differences between β coefficients for the unshifted and shifted data with p < 0.001 to mirror the latest recommendations for false positive correction on a voxel-wise level.33

Results

Behavioral Results.

To more effectively model the hemodynamic response function, only those participants with ≥ 56% accuracy across all trials were included in principal analyses. However, to maintain consistency with previous behavioral investigations of AX-CPT patterns in SZ/PSD,34-36 the principal reaction time (RT) analyses (Condition: Cue [A vs. B], Probe [AY vs. BX], Cue vs. Probe [A vs. AY; B vs. BX]) were repeated using good and poor performers (PSD\textsubscript{all}) and the same 2x2 (Group: HC vs. PSD\textsubscript{all} x Condition) repeated measure ANOVAs. Similar to previous findings, a main effect of Group (PSD\textsubscript{all} > HC) was present in all four ANOVAs (all p’s<0.05). However, the Condition\times Group interaction was also significant in the AY vs. BX analysis (F\textsubscript{1,205}=9.17, p=0.003). Follow-up tests indicated a greater difference between AY and BX trials for the HC (F\textsubscript{1,205}=33.60, p≤0.001) compared to PSD\textsubscript{all} (F\textsubscript{1,205}=12.31, p≤0.001) group. Similar to previous findings,34-36 these findings indicate a greater deficit in proactive compared to reactive cognitive control in the PSD\textsubscript{all} group. However, it is also critical to recognize that this finding was primarily driven by PSD\textsubscript{pp} (Supplemental Table 2 and Supplemental Figure 1), and that performance accuracy was too low to permit adequate modeling of the hemodynamic response.

Differences in covariance between groups were assessed through Pitman-Morgan tests within the contrast assessing proactive cognitive control (AY vs. BX). Both HC (t\textsubscript{57}=−5.66; p<0.001) and good performing PSD (PSD\textsubscript{pp}; t\textsubscript{106}=−6.17; p<0.001) demonstrated similar covariance differences, with greater variance for BX relative to AY conditions. Accordingly, no difference in covariance magnitude between groups was observed (Z=−0.66; p=0.51).
The multimodal nature of the AX-CPT may have produced sensory confounds in working memory processing. However, results from our previous study in HC24 produced behavioral performance patterns similar to studies using the unimodal version of the AX-CPT in HC,32,37 and performance values of the full PSD cohort (Supplemental Table 3) using common AX-CPT clinical threshold criteria (i.e., error rate greater than or equal to 56\% on AX, 100\% on AY or BX, or 50\% on BY)38 was within range of unimodal AX-CPT performance in SZ34,35,39,40 and BP-I,41 suggesting that cognitive control functions in a supramodal fashion.

Condition Effects and Condition×Time Interaction Effects

A series of 2×2×2 [Group (PSD vs. HC)×Condition×Time (Peak vs. Late-peak)] mixed-measures ANCOVAs, with mean FD as a covariate, examined functional activation across the principal contrasts, with Condition effects and Condition×Time interactions explored here. The cue (A vs. B) contrast demonstrated a Condition main effect for the bilateral dorsolateral prefrontal cortex (DLPFC; \(F_{1,159}=7.11, p=0.008\); partial \(\eta^2=0.04\)) and ventrolateral prefrontal cortex (VLPFC; \(F_{1,160}=4.70, p=0.032\); partial \(\eta^2=0.03\)), with both ROIs demonstrating increased activity for B relative to A cues. The probe (AY vs. BX) contrast exhibited a Condition×Time interaction (\(F_{1,160}=5.84, p=0.017\); partial \(\eta^2=0.04\)) only within the VLPFC, with both conditions evidencing a Time pattern of Peak>Late-peak activity, albeit a greater magnitude of difference for AY relative to BX (\(p=0.007\)) conditions. For the A vs. AY contrast, results indicated a Condition×Time interaction (\(F_{1,158}=4.28, p=0.040\); partial \(\eta^2=0.03\)) and Condition effect (\(F_{1,158}=7.77, p=0.006\); partial \(\eta^2=0.05\)) in the DLPFC, with greater activity in the AY relative to A condition, and both conditions demonstrating significant Peak>Late-peak activity for Time, with the A cue showing a greater magnitude of Peak change (\(p<0.001\)) than the AY (\(p=0.002\)) probe. For VLPFC activity, there was an effect of Condition only (\(F_{1,160}=18.98, p<0.001\); partial \(\eta^2=0.11\)), indicating greater overall activity in the AY relative to A condition. The B vs. BX contrast did not demonstrate any Condition effects or Condition×Time interactions for either DLPFC or VLPFC (all \(p’s>0.05\)).

Whole Brain Results

Assessing whole brain activity for the cue (A vs. B) contrast, a Condition×Time interaction was observed in the anterior (aDMN) and posterior (pDMN) default mode network, with significant deactivation in the Late-peak phase during B relative to A conditions (Supplemental Figure 3A&B), as was previously observed24 within HC. There was also a Condition main effect of Cue (B>A) in the right anterior insula/VLPFC (aINS/VLPFC), bilateral DLPFC and supplemental motor area (SMA), bilateral posterior parietal cortex (PPC), left inferior temporal gyrus (ITG), and left Lobule VI of the cerebellum (Supplemental Figure 3A & 3C).

For the probe (AY vs. BX) contrast, there were Condition×Time interactions following two general patterns of activation (Supplemental Figure 4A). The bilateral inferior parietal lobule (IPL), left superior temporal gyrus (STG), right caudate/putamen, left lentiform nucleus, and left
Lobule VIIa/VIIb of the cerebellum exhibited decreased activation during Peak relative to Late-peak phases during AY, but not BX trials. Both the left temporal pole and left parahippocampal gyrus (PHG) displayed no difference between AY and BX trials during the Peak phase, but differences between probe trials (temporal pole: LP>0>P; PHG: P>0>LP) during the Late-peak phase. Finally, there was a Condition main effect of Probe for the bilateral superior temporal gyrus (STG; extending to MTG on right), demonstrating overall elevated activity for AY relative to BX conditions.

For the B vs. BX contrast, there were Condition×Time interactions demonstrating a number of patterns (Supplemental Figure 4B). Both the bilateral aINS and bilateral auditory cortex (A1) exhibited no difference between Peak and Late-peak for B cues. However, for BX probes, A1 showed greater Peak than Late-peak activation, while the aINS showed greater Late-peak than Peak activation. Conversely, the anterior cingulate cortex (ACC) and dorsomedial PFC demonstrated greater deactivation from Peak to Late-peak in B cues as well as increased activity from Peak to Late-peak in BX probes. The bilateral ventral visual streams showed greater Peak than Late-peak activation in B cues only, whereas the right dorsal visual stream showed greater activation during the Peak, but not Late-peak, phase for B relative to BX trials. There was no unique activation as part of the main effect of Condition.

For the A vs. AY contrast, there was widespread significant Condition×Time interaction throughout the brain (Supplemental Figure 4C). Generally, this resulted from increased activation during Late-peak relative to Peak phases in A cues but not AY probes. However, the STG showed increased activity for Peak relative to Late-peak phases during A cues, with little activity during AY probes, while the anterior vermis exhibited a greater magnitude of activation difference between Peak and Late-peak phases for A cues relative to AY probes. Areas exhibiting a main effect of Condition in this analysis were largely consistent with the interaction, with the addition of the anterior PFC and pre-SMA. Here, the anterior PFC demonstrated deactivation in A cues and activation in AY probes, whereas the pre-SMA activated during A cues but not AY probes.

References

DOI: 10.1503/jpn.190212

© 2020 Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

34. Edwards BG, Barch DM, Braver TS. Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Front Hum Neurosci. 2010;4:32.

DOI: 10.1503/jpn.190212

© 2020 Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Online appendices are unedited and posted as supplied by the authors.

DOI: 10.1503/jpn.190212

© 2020 Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table 1: Literature review of fMRI AX-CPT studies and contrasts employed.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Behavioral Contrasts</th>
<th>Imaging Contrast</th>
<th>Cognitive Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter et al.</td>
<td>1998</td>
<td>NA</td>
<td>All Probes</td>
<td>Error/Competition</td>
</tr>
<tr>
<td>Barch et al.</td>
<td>2001</td>
<td>d' - index; RT and ACC ANOVAs (Group x Trial x Delay)</td>
<td>Delay (Long vs. Short)</td>
<td>Context Maintenance</td>
</tr>
<tr>
<td>Carter et al.</td>
<td>2001</td>
<td>RT Correct vs Incorrect Responses (collapsed across all probes)</td>
<td>Correct vs Incorrect Trials (across all probes)</td>
<td>Error Monitoring</td>
</tr>
<tr>
<td>MacDonald et al.</td>
<td>2003</td>
<td>Accuracy for all probes, d' - index, AY & BX interference scores</td>
<td>Cue (B-A)</td>
<td>Context Processing</td>
</tr>
<tr>
<td>Locke & Braver</td>
<td>2008</td>
<td>ANOVA (Condition); all probes</td>
<td>AX condition (assessing reward manipulation)</td>
<td>Proactive/Reactive</td>
</tr>
<tr>
<td>Paxton et al.</td>
<td>2008</td>
<td>ANOVA (Probe x Group); all probes</td>
<td>Cue vs Probe; BX vs Baseline; BX vs. BY</td>
<td>Goal Maintenance</td>
</tr>
<tr>
<td>Yoon et al.</td>
<td>2008</td>
<td>ANOVA (Probe x Group); all probes</td>
<td>Cue (B-A)</td>
<td>High/Low Control</td>
</tr>
<tr>
<td>Braver et al.</td>
<td>2009</td>
<td>NA</td>
<td>Cue vs Probe</td>
<td>Proactive/Reactive</td>
</tr>
<tr>
<td>Edwards et al.</td>
<td>2010</td>
<td>AY vs. BX</td>
<td>Cue (B-A); Cue vs Probe</td>
<td>Proactive/Reactive</td>
</tr>
<tr>
<td>Yoon et al.</td>
<td>2012</td>
<td>AX vs. BX</td>
<td>Cue (B-A)</td>
<td>High/Low Control</td>
</tr>
<tr>
<td>Lesh et al.</td>
<td>2013</td>
<td>ANOVA (Probe x Group); all probes</td>
<td>Cue (B-A)</td>
<td>Proactive/Reactive</td>
</tr>
<tr>
<td>Niendam et al.</td>
<td>2014</td>
<td>ANOVA (Probe x Group); all probes</td>
<td>Cue (B-A)</td>
<td>High/Low Control</td>
</tr>
<tr>
<td>Poppe et al.</td>
<td>2016</td>
<td>d' - index & accuracy for all probes</td>
<td>Cue (B-A)</td>
<td>Goal Maintenance</td>
</tr>
<tr>
<td>Lesh et al.</td>
<td>2015</td>
<td>ANOVA with d-prime index</td>
<td>Cue (B-A)</td>
<td>High/Low Control</td>
</tr>
<tr>
<td>Lopez-Garcia et al.</td>
<td>2015</td>
<td>Cue vs Probe</td>
<td>Cue (B-A)</td>
<td>Goal Maintenance</td>
</tr>
<tr>
<td>Niendam et al.</td>
<td>2018</td>
<td>Analyzed d' - index</td>
<td>Cue (B-A)</td>
<td>High/Low Control</td>
</tr>
<tr>
<td>Ryman et al.</td>
<td>2018</td>
<td>ANOVA (Condition x Group); A vs. B; AX vs. AY; AX vs. BX</td>
<td>A vs. B; AX vs. AY; AX vs. BX</td>
<td>Proactive/Reactive</td>
</tr>
<tr>
<td>Ryman et al.</td>
<td>2018</td>
<td>t-test: AX vs. AY vs. BX conditions</td>
<td>A vs. B; AX vs. AY; AX vs. BX; AY vs. BX</td>
<td>Proactive/Reactive</td>
</tr>
<tr>
<td>Smucny et al.</td>
<td>2018</td>
<td>d' - index</td>
<td>Cue (B-A)</td>
<td>High/Low Control</td>
</tr>
</tbody>
</table>

Note: € = DPX variant of AX-CPT; ¥ = EEG study.
Supplemental Table 2: Reaction Time Data Across Groups for AX-CPT

<table>
<thead>
<tr>
<th>AX-CPT RT</th>
<th>HC (N=59)</th>
<th>PSD<sub>gp</sub> (N=108)</th>
<th>PSD<sub>pp</sub> (N=46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acue</td>
<td>620.46±179.79</td>
<td>719.83±173.68</td>
<td>888.06±285.65†</td>
</tr>
<tr>
<td>Bcue</td>
<td>677.41±166.91</td>
<td>756.63±165.72</td>
<td>915.80±206.17†</td>
</tr>
<tr>
<td>AX</td>
<td>627.66±133.32</td>
<td>680.12±156.09</td>
<td>837.47±252.25†</td>
</tr>
<tr>
<td>AY</td>
<td>832.30±156.31</td>
<td>906.05±176.86</td>
<td>979.69±180.93†</td>
</tr>
<tr>
<td>BX</td>
<td>653.51±271.41</td>
<td>785.92±281.38</td>
<td>1018.65±328.32†</td>
</tr>
<tr>
<td>BY</td>
<td>698.11±197.11</td>
<td>806.91±206.13</td>
<td>1027.73±234.71†</td>
</tr>
</tbody>
</table>

RT: reaction time (ms); HC: Healthy Controls; PSD_{gp}: Psychotic Spectrum Disorder- Good Performers; PSD_{pp}: Psychotic Spectrum Disorder- Poor Performers; eff: Cohen’s d effect size; AB: HC vs. PSD_{gp}; BC: PSD_{gp} vs. PSD_{pp}; AC: HC vs. PSD_{pp}; NA: Not Applicable since not a principal analyses/condition; †: Variable N due to exclusions of participants with complete or near complete inaccuracy (Acue=41; Bcue=44; AX=43; AY=43; BX=41; BY=40).
Supplemental Table 3: Performance parameters for AX-CPT after common threshold exclusions*

<table>
<thead>
<tr>
<th></th>
<th>HC (n=64)</th>
<th>SP (n=88)</th>
<th>SCA (n=11)</th>
<th>BPD-I (n=36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AX</td>
<td>0.95±0.08</td>
<td>0.88±0.13</td>
<td>0.92±0.08</td>
<td>0.93±0.08</td>
</tr>
<tr>
<td>AY</td>
<td>0.94±0.09</td>
<td>0.91±0.09</td>
<td>0.90±0.09</td>
<td>0.93±0.09</td>
</tr>
<tr>
<td>BX</td>
<td>0.90±0.17</td>
<td>0.77±0.24</td>
<td>0.79±0.22</td>
<td>0.87±0.14</td>
</tr>
<tr>
<td>BY</td>
<td>0.97±0.07</td>
<td>0.91±0.12</td>
<td>0.97±0.03</td>
<td>0.95±0.08</td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AX</td>
<td>635.89±134.46</td>
<td>723.10±185.58</td>
<td>715.20±121.08</td>
<td>656.26±128.59</td>
</tr>
<tr>
<td>AY</td>
<td>839.19±156.29</td>
<td>922.21±173.57</td>
<td>955.53±163.38</td>
<td>894.66±180.81</td>
</tr>
<tr>
<td>BX</td>
<td>676.24±275.65</td>
<td>870.15±350.29</td>
<td>931.57±236.58</td>
<td>731.17±269.50</td>
</tr>
<tr>
<td>BY</td>
<td>711.21±199.56</td>
<td>866.98±237.98</td>
<td>849.82±119.78</td>
<td>782.26±189.11</td>
</tr>
</tbody>
</table>

HC=healthy control; SP=Schizophrenia; SCA=Schizoaffective; BP-I=Bipolar Disorder Type I.
Reported values are mean and standard deviation. †=Threshold of performance parameters based on common criteria for clinical AX-CPT38, which indicates similar parameters relative to unimodal applications of the AX-CPT.
Supplemental Figure 1: Box-and-scatter plots depict reaction times (RT) between healthy controls (HC; N=58; blue diamonds), good-performing (≥56% accuracy on all conditions) patients with psychotic spectrum disorder (PSDgp; N=105; green diamonds), and poor-performing (<56% accuracy on any condition) PSD (PSDpp; N=46; salmon diamonds).
Supplemental Figure 2: Panel A displays significant Group×Time interaction within the right fusiform extending into crus I of the cerebellum (Fus/Crus-I) based on the Talairach atlas (X=sagittal slice location; R=right). Significance level is denoted by color (red: $p<0.001$; yellow: $p<0.0001$). Panel B depicts a line graph with standard error bars representing the percent signal change (PSC) from baseline for the average hemodynamic response averaged across reactive (AY) and proactive (BX) probe trials between HC (N=58; blue line) and PSD$_{gp}$ (N=105; red line). Panel background shading designates Peak (P; dark grey) or Late-peak (LP; light grey) phases of the hemodynamic response.
Supplemental Figure 3: Panel A contains inflated brain renders of the right (R) and left (L) hemispheres presenting significant clusters resulting from the main effect of Cue during a 2×2×2 [Group (PSD vs. HC) × Cue (A vs. B) × Time (Peak vs. Late-Peak)] ANCOVA. In the anterior (aDMN) and posterior (pDMN) default mode network, the main effect largely overlapped Cue×Time.
interaction results (Panel B). Additionally, a main effect of Cue was present in the right ventrolateral (VLPFC) and left dorsolateral (DLPFC) prefrontal cortex (Panel C). Significance level is denoted by color intensity for both the main effect alone (A<B; blue: $p<0.001$; cyan: $p<0.0001$) and Cue×Time interaction and main effect (A>B; red: $p<0.001$; yellow: $p<0.0001$). Box-and-scatterplots represent percent signal change (PSC) activity within these regions of interest, with shading in Panel B indicating Peak (white) versus Late-peak (grey) phases of the hemodynamic response of Cue×Time clusters. Healthy controls (HC; N=58; blue diamonds) and ‘good’ performing (≥56% accuracy on all conditions) patients with a psychotic spectrum disorder (PSDgp; N=105; red diamonds) are presented in both panels for completeness.

DOI: 10.1503/jpn.190212

© 2020 Joule Inc.

Online appendices are unedited and posted as supplied by the authors.

Supplemental Figure 4: This figure presents multiple brain renders in Talairach space (X=sagittal plane; Z=axial plane; left [L] and right [R] hemispheres) where there are significant clusters from the Condition×Time interaction in 2×2×2 [Group (PSD vs. HC) × Condition × Time (Peak vs. Late-Peak)] ANCOVA analyses. These include the Probe contrast (AY vs. BX; Panel A), as well as two Cue~Probe (B vs. BX, Panel B; A vs. AY, Panel C) contrasts. The significance of the omnibus test is denoted by color intensity (red: *p*<0.001; yellow: *p*<0.0001). Labelled regions include the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), superior temporal gyrus (STG), caudate (Caud), primary auditory cortex (A1), superior and inferior parietal lobe (SPL/IPL), middle occipital gyrus (MOG), inferior occipital gyrus (IOG), cuneus (Cun), and lobule VIIa of the cerebellum (Lob VIIa).