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Introduction

A striking feature of psychosis is the heterogeneity of its pre-
sentation. Psychosis-like experiences occur commonly in the 
general population, often without notable functional conse-
quences. In general health care settings, psychotic symptoms 
that significantly affect one’s daily function occur in various 
disorders (e.g., delirium), often with full resolution. In 
psychi atric clinics, the course of psychosis varies from being 
a single, time-limited episode on one end of the spectrum to 
a tenacious illness at the other extreme, with a wide range of 
variable trajectories. Even among patients with schizophre-
nia, who are diagnosed on the basis of persistent deteriora-
tion, marked variation is present in response to treatment, 
frequency of relapses and degree of eventual recovery. 
 Despite this, existing theoretical accounts of psychosis focus 
almost exclusively on how symptoms are initially formed, 
with much less emphasis on explaining their variable course. 
Thus, to date the focus of understanding the neurobiology of 
psychosis is largely at the symptom-formation level, rather 
than on the illness course in individuals. As a result, we con-
tinue to lack a physiologic framework to explain the wide 
range of variable outcomes that unravel to the point at 
which a patient experiences an initial episode of psychosis. 
In this article I attempt to construct an account that could 
link several existing notions of the biology of psychosis with 

the variant clinical trajectories. My aim is to put forward a 
thesis that could be invoked during a clinical dialogue with a 
concerned carer who is wondering why their loved one is 
presenting so differently from another patient attending the 
same treatment program.

First, I briefly review the concept of symptom resolution in 
psychosis and the evidence linking psychosis in general, and 
schizophrenia in particular, to cellular and systems-level brain 
connectivity. (The term “resolution” has been used to  describe 
the reduction of symptoms to a level that is appreciable to the 
patient and care providers. The concept of durability of such 
resolution [i.e., remission] and its utility [i.e., recovery] are not 
the subjects of this review.) I will invoke existing ideas about 
the role of brain development, degeneration and plasticity to 
show how the concept of brain-network–level homeostasis 
can account for the varied course of psychosis. I also argue 
that the resolution of psychotic symptoms requires inherent 
homeostatic processes that, when aberrant, inhibit a fuller 
 recovery. Finally, I highlight the aspects of psychotic illnesses 
that are not fully addressed by this framework and suggest 
future studies that are required to test the implications of the 
notions proposed here. I use the term “neural system stabil-
ization” throughout this paper for the sake of simplicity, but 
this refers to the homeostatic process affecting all cellular con-
stituents (i.e., glial cells and vasculature) that enable informa-
tion transfer involving the entire brain.
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A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional conse-
quence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even 
among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to 
treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on 
how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that 
links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of sys-
tems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis. 
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Onset and resolution of psychosis

Psychotic disorders are clinically defined by and diagnosed 
based on the presence of delusions and hallucinations along-
side deficits in processing speed, attention, verbal fluency, 
emotional expression, logicality and coherence of thought. 
These symptoms have a high probability of co-occurrence in 
some patients and demonstrate a variable degree of resolu-
tion after first presentation.

Several features of the natural course of psychosis call for 
 explanation.1,2 Isolated psychotic experiences such as voice-
hearing and delusion-like ideas occur regularly among other-
wise healthy individuals.3,4 Although these experiences are 
mostly transitory,5,6 the epidemiological risk factors for such 
experiences overlap substantially with those of psychotic dis-
orders with conventionally poorer outcomes, such as schizo-
phrenia.3,4 People with psychosis-like experiences or the more 
tightly defined constructs of at-risk states or schizotypal disor-
der are at a higher risk of developing full-blown psychosis, but 
the majority of those who experience such transient psychotic 
states do not develop a psychotic episode;7,8 the risk of conver-
sion peaks at 2 years and drops with longer follow-up periods.9

The onset of psychosis is often insidious or subacute in 
schizophrenia (53%10 to 70%11), but it can be florid and acute 
in many other psychotic disorders.12 The insidious prodromal 
stage in schizophrenia frequently presents with anxiety re-
lated to often numerous random coincidental associations 
and primitive perceptual aberrations,13–15 but at the peak of a 
fully evolved episode, psychosis is characterized by a limited 
number of stereotyped and fully formed delusions and hallu-
cinations that tend to repeat.16 As psychosis evolves, patients 
often appear to add further elaborations to this limited set of 
delusions and hallucinations, rather than forming completely 
unrelated ideas (see Table 1 for first-person accounts17–19).

A substantial number of patients with first-episode psy-
chosis have only 1 episode.20–22 Globally, the incidence rates 
of such acute and transient psychotic disorders are consis-
tently higher than the incidence of schizophrenia.23,24 Psycho-
sis can resolve without treatment in some of these pa-
tients.21,25 Longitudinal studies conducted before the advent 
of neuroleptics remind us that these numbers are large 
enough to not be dismissed.26 When appropriate treatment is 
started, a large number of first-episode patients show an 

early symptomatic response;27,28 such an early reduction in 
the severity of delusions and hallucinations predicts a 
 favourable later outcome.29–31 Resolution of delusions does 
not usually involve “extinction” or “unlearning” the associa-
tions underlying psychotic beliefs; instead, it involves a grad-
ual ability to detach from the pressure of the beliefs and per-
ceptual abnormalities.15,32 While positive symptoms become 
less prominent with the course of illness, cognitive deficits 
and negative symptoms remain stable.33–35

Relapses can occur even in adequately medicated patients 
(primary relapse),36,37 but the rates of relapse are distinctly 
higher in those who discontinue treatment in the early stages 
of illness (interventional relapse).38,39 When relapses occur 
during the course of illness, irrespective of the duration of the 
intervening period of recovery, the same predictable set of 
symptoms tends to recur with each episode.40,41 Furthermore, 
unlike the first episode of psychosis, which is preceded by a 
long duration of prodromal symptoms and a gradual buildup 
of unusual experiences, relapses often occur without a similar 
insidious prodrome.36 With each relapse, treatment resistance 
becomes more likely, especially when the relapse occurs after 
discontinuation of antipsychotic therapy.36,39 Notwithstanding 
this phenomenon, a small proportion of patients achieve good 
function despite a high number of early relapses.42–44

Progressive structural changes of the brain 
in psychosis

One of the most consistent neuroimaging observations in 
 patients with psychosis is a reduction in the amount of grey 
matter volume and thickness measured using MRI.45,46 These 
grey matter deficits are present even in the early stages of a 
patient’s life47,48 and are shared to some extent by their healthy 
siblings.49–51 Once the early psychotic symptoms come to the 
surface, these grey matter deficits appear to intensify,52,53 espe-
cially in the first few years,54 before slowing down.55 Some 
 reports indicate a continuous but low level of ongoing grey 
matter reduction, even in much later stages.56,57 The extent of 
the grey matter deficits relates to both the severity of ill-
ness58–60 and the degree of exposure to agents that are associ-
ated with relapses and functional disability.55,61,62 In addition, 
rather controversially, longitudinal grey matter reduction is 
more pronounced in those who have higher cumulative 

Table 1: First-person accounts of delusional activity

Author Excerpt

Chadwick17 As my delusional system expanded and elaborated, it was as if I was not “thinking the delusion,” the delusion was “thinking me!” I was 
totally enslaved by the belief system. Almost anything at all happening around me seemed at least “relevant” and became, as Piaget 
would say, “assimilated” to it. Another way of putting things was that confirmation bias was massively amplified, everything confirmed and 
fitted the delusion, nothing discredited it. Indeed, the very capacity to notice and think of refutatory data and ideas was completely gone.

Chapman18 I often misinterpreted real-life occurrences such as the behaviours of others as somehow related to those conspiring against me. When 
people passed by (police cruisers, door-to-door salespeople), I thought they must be there to spy on me. When I half-heard a 
conversation in the distance or the honking of a car, I would think it held special significance for me. I would randomly open a dictionary 
and find a word (“die,” “liar,” “evil”) and interpret how the word had special meaning for me.

Powell19 After the first hospitalization, it was almost predictable that every 4 years my mother’s behaviour appeared to change in the fall … 
Although my mother tried desperately to recuperate from each psychotic episode and each arrest, she became increasingly reclusive and 
paranoid. Each episode was precipitated by an erotomanic delusion or delusions of persecution in the workplace that followed shortly 
after the psychiatrist decided to taper her antipsychotic medications.
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 exposure to antipsychotic medications (with some differences 
between typical and atypical drugs).52,63,64 Nevertheless, at sev-
eral brain regions, these changes appear to be reversible. Cer-
tain types of nondrug therapies appear to reverse or slow the 
structural changes in patients.65–68

Not every patient with psychosis shows progressive struc-
tural deficits, but in those who do show such grey matter 
changes, there seems to be a predilection for certain brain 
 regions, including the superior temporal,53,60,69–75 lateral fron-
tal,71,72,75,76 insular52,60,70,73,77 and anterior cingulate70,71 cortex on a 
more consistent basis, followed by the thalamus,75 precuneus76 
and inferior parietal75 and hippocampal74 regions somewhat 
less consistently. Interestingly, in the large-scale organization 
of correlated brain activity and structural connectivity, these 
regions constitute the so-called “hubs”78 or “rich clubs”79 in 
the human brain. Hubs and rich-club regions typically form 
the most connected nodes in the overall network architecture 
of the human brain and consequently show higher levels of 
overall activity.80,81 The connectional architecture and activity 
load experienced by these regions make them particularly 
vulnerable to structural damage in diffuse brain disorders 
such as schizophrenia.81,82

The widespread structural changes in psychotic disorders 
are often discussed in the context of either extended aberra-
tion in neurodevelopment or a limited form of neurodegen-
eration. While earlier theorists used the term degeneration to 
refer to the longitudinal changes in psychosis, it is now 
 increasingly clear that neither a progressive neuronal loss 
nor a relentless clinical deterioration characteristic of true 
neurodegeneration occurs in psychotic disorders, leading to 
a preference for the term neuroprogression to denote post-
onset brain changes.83 An overwhelming number of observa-
tions now exist that are interpreted as signs suggestive of 
 aberrant neurodevelopment in schizophrenia.84–88 An equally 
strong line of argument exists for a limited form of neuro-
progression.89–92 Several attempts to bridge the 2 notions 
have been made in recent times.93–97 Most of the proposed 
compromises hinge on the notion that a healthy adult brain 
continues to develop and change in structure over time;98,99 a 
developmental aberration would continue to affect brain 
structure in adult life, thus explaining the neuroprogression 
in schizophrenia.100

Psychosis as a disorder of connectivity

The notion that psychosis is related to aberrant connectivity 
in the brain originated in the 19th century.101–104 The initial 
concept of disconnection was based on the manifest discon-
nection in thoughts, actions and behaviour seen in patients 
with psychosis. Various elegant theories later resurrected, 
refined and pinned this idea to the brain level, with the aid 
of postmortem and neuroimaging studies in the last 
20  years.105–109 The 3 key pillars of the dysconnectivity 
 hypothesis are (1) the reduction in neuropil, the tissue zone 
that normally houses a large number of neuronal synapses, 
observed in postmortem brains of patients with schizophre-
nia;107,110,111 (2) abnormal increases and decreases in the correl-
ation of activity among various brain regions (functional con-

nectivity) measured using positron emission tomography, 
MRI, electroencephalography and magnetoencephalography 
studies;108,112 and (3) abnormal increases and decreases in the 
indices of white matter integrity (structural connectivity) 
measured using diffusion tensor imaging.113,114 These obser-
vations arise from different measurement tools used at differ-
ent spatial and temporal scales and activity levels, but they 
are notably reconcilable at a whole brain (systems) level115,116 
and speak to a reduction in the ability to transfer information 
within affected brains.

Although there are notable spatial variations in the patterns 
of resting-state functional connectivity in relation to psycho-
sis, some patterns are now emerging consistently with impro-
vised data-processing approaches.117,118 Functional hyper-
connectivity, especially affecting the prefrontal cortex, is more 
pronounced during early stages of schizophrenia,119,120 relates 
to positive rather than the negative symptoms of the ill-
ness119,121,122 and normalizes to some extent with antipsychotic 
treatment.123,119 Such functional hyperconnectivity also results 
from external agents that typically induce psychotic symp-
toms.124,125 Ketamine, an agent that produces nearly all of the 
core symptoms of schizophrenia in healthy humans, produces 
robust hyperconnectivity involving the prefrontal cortex.125–130 
In particular, this resting-state hyperconnectivity involves a 
set of brain regions that constitute the default-mode net-
work.122,131,132 These regions characteristically show an ele-
vated level of activity at rest and appear relatively deactivated 
when a person is engaged in task performance.133 In contrast 
to the prefrontal/default mode network hyperconnectivity in 
the early stages, a wider hypoconnected resting state is often 
noted in later stages of schizophrenia.112,120,126

Certain emerging observations provide clues as to the 
neural process that may underlie the hyperconnectivity 
between 2 brain regions seen in resting-state functional 
MRI. First, hyperconnectivity is often seen during the in-
itial response to neuronal injury.134,135 Second, training and 
new learning in healthy brains results in an early increase in 
functional connectivity in relevant brain regions, along with 
hypoconnectivity.136,137 Even in the absence of a learning 
 exercise, coordinated electrical/magnetic neural stimulation 
(plasticity-inducing paradigms) results in functional hyper-
connectivity, indicating a Hebbian increase in neural com-
munication at a synaptic level.138

The concept of neural system stabilization

The human brain can be regarded as a connected system that 
tolerates any faults by restoring itself. This concept has its 
roots in 3 broad theoretical notions: (1) Bernard and Cannon’s 
notion of “homeostasis” in biological systems;139,140 (2) the no-
tion of self-organization in dynamic physical systems;141–143 
and (3) the concept of fault tolerance employed in cybernet-
ics, based on Dijkstra’s original network theory.144–146 In this 
section, I consider how these processes can scale up from 
synaptic to the macro-connectome level.

Homeostasis is a ubiquitous regulatory process that serves 
to maintain the function of a system at a set activity level, 
providing stability.147 The human brain is constantly 
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 bombarded by events and objects in the environment that 
evoke neuronal activity; in addition, constant spontaneous 
activity is also a feature of neuronal existence.148,149 Given 
the thousands of synapses that each neuron has with many 
other neurons, accidental coincidence of stochastic or 
 stimulus-driven firing between 2 (or more) neurons is 
highly likely in this milieu.150 Hebbian rules of plasticity 
dictate that such coincidental spikes of activity will result 
in strengthening of the synaptic connectivity between the 
2 neurons.151,152 But such an associative, input-specific 
learning process is often destabilizing to the neuronal en-
semble, because it sets up the constituent neurons for either 
runaway hyperactivity or global silencing.147,153,154 If left 
 unchecked, such a system can end in a hyperconnected or 
hypoconnected mode,155 neither of which is optimal for 
new learning or information transfer.156,157 The maintenance 
of both sparse functional connectivity and a steady baseline 
activity with low energy consumption are important for the 
status quo of the human brain.158

Several modes of homeostatic compensation operate to 
reduce the resulting instability;159,160 some of these involve 
functional rebalancing by stabilizing the firing rate of a 
neur on (intrinsic plasticity), tuning the inhibitory inputs 
(inhibitory plasticity) or down-weighting synapses (scal-
ing).161 In addition, structural alterations, such as changes in 
synaptic size, synaptic number and the dendritic spine 
structure (structural plasticity) either co-occur or serve as a 
second-level homeostatic mechanism.160,162,163 Reduced con-
nectivity at the synaptic level is compensated for by an 
 increase in the size164,165 and number of synapses, and re-
duced neuronal activity (e.g., via input deprivation) results 
in reduced synaptic elimination.166 These normal physio-
logic processes that regulate neuronal excitability or synap-
tic strength continuously degrade the absolute effect of syn-
aptic coding that occurs with associative learning, but 
preserve the essential memory traces.153 Together, the 
 homeostatic processes serve to maintain the overall excit-
atory and inhibitory balance in local neuronal ensembles 
that constitute the global brain connectome.167 This enables 
a connectome-wide system stabilization that facilitates opti-
mal signal processing and learning.168 Such readiness is a 
prerequisite for continuous adaptation to one’s environ-
ment.169 A similar self-restoring function has been described 
in various computational systems with distributed control, 
especially in the context of systemic fault tolerance that 
 ensures the return of a perturbed system to its legitimate 
state in the service of global objectives.144,145

The notion of neural system stabilization in the global 
brain connectome refers to the scaled-up systemic effects of 
the homeostatic process operating at the synaptic level to 
maintain sparse connectivity and optimal activity, as summa-
rized in Figure 1.

Psychosis and inefficient neural system 
stabilization

In the following section, I provide an account of how a dis-
ruption in neural system stabilization can result in the var-

ied presentations of psychotic experiences. First, I propose 
that several factors can disrupt the stable pattern of timing-
dependent coincidence detection at a neural level.

The first factor is intrinsic hyperactivity: a neural tissue 
with anomalously high frequency of activity can result in an 
increased probability of associative plasticity. Depending on 
the location of this activity, at an experiential level, we can 
speculate that people may experience brief sensory or cogni-
tive disruptions of a fleeting nature. Several studies of people 
who were hallucinating have reported an elevated level of 
neural activity involving sensory cortices.170,171

The second factor is disturbances in the normal constraints 
on associative plasticity. A cardinal feature of Hebbian plas-
ticity is dependence on the temporal order of coincidental 
neuronal activation;172 under certain circumstances, this tem-
poral window can be prolonged, increasing the probability of 
formation of coincidences. For example, dopamine and sub-
stances that induce an excess release of dopamine could 
 potentiate this mechanism.173

The third factor is failure of habituation: repeated presenta-
tion of the same stimulus elicits progressively smaller neur-
onal response.174 Disruptions in this habituation could pro-
long the state of evoked neuronal activity, increasing the 
probability of coincidences.175 A large body of electrophysio-
logical studies points toward a habituation deficit in psycho-
sis.176–178 At an experiential level, we can speculate that people 
may report a lack of feeling of familiarity for events, again 
 increasing ambiguity and uncertainty.175

Fig. 1: Illustration to reflect the balance between physiologic out-
puts of a neural unit (i.e., neuronal firing “activity”) and the social 
influence on the component unit (“connectivity”). If neuronal firing 
is excessive, the balance tilts, leading to engagement of homeo-
static mechanisms that reduce the connectivity and restore the bal-
ance. Conversely, if synaptic strength/number (connectivity) is re-
duced, this triggers a compensatory increase in neuronal firing. 
This neural system stabilization helps to maintain topological 
 homeostasis, likely characterized by a narrow range of “tuned 
states” of the brain connectome.    
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Although these aberrations clearly have the potential to 
generate psychotic experiences (Fig. 2), in each case, in the 
presence of an intact homeostatic plasticity, the synaptic 
 coding will be weakened and eliminated. Thus, these disrup-
tions can produce periodic psychosis-like experiences and 
prodromal features on their own but are insufficient to pro-
duce a psychotic episode. If agents that induce the above 
neural states are repeated frequently or occur in massive 
doses, then a temporary overload of homeostatic mech-

anisms can ensue, leading to a psychotic episode, although 
with a high probability of full resolution with or without 
treatment (Fig. 3). A likely example is the clinical presenta-
tion of drug-induced psychosis with full resolution. If this is 
the case, what is the necessary condition for the emergence of 
a schizophrenia-like illness?

I propose that in certain people, aberrant (nonstructural) 
homeostatic plasticity leads to a lack of resolution of coinci-
dental associations. In such cases, synaptic strengthening 

Fig. 2: Anomalous associations and psychotic experiences. (A) Learning associations between 2 time-variable signals require 
tight temporal coordination (Hebbian window), shown as a narrow interval between the activation of pre- and postsynaptic neur-
ons in the first illustration. This window can be prolonged in hyperdopaminergic states, as shown in the lower panel. (B) Anoma-
lous bursts of presynaptic activity can lead to inadvertent Hebbian associations. (C) Failure of habituation may lead to prolonged 
states of evoked activity, increasing the probability of Hebbian associations.

A B C Pre

Post

Post

Pre
Post

Pre

Post

Pre

Fig. 3: Stabilization lag in a psychotic episode. Psychotic episodes can occur after repetitive or massive doses of inducing 
agents through mechanisms shown in Figure 2, leading to a temporary overload of neural system stabilization. Provided that the 
cellular/topological system stabilization apparatus (homeostatic) is intact, these episodes can resolve fully.
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 accumulates (often insidiously) and the neuronal ensemble 
harbouring such coincidental associations eventually experi-
ences a runaway excitation, forming a strong feed-forward 
loop that would quickly incorporate other correlations to the 
initial association (delusional elaboration characteristic of a 
psychotic episode), resulting in a state of indiscriminate hyper-
connectivity in the proximate network space of the affected 
 ensemble. In such circumstances, a recurrent, stereotyped tem-
poral pattern is set in motion that can persist for an abnormally 
long period of time (“burnt into memory”155). This hypercon-
nectivity enables instantaneous recruitment of neuronal mod-
ules that are not normally involved in the processing of a 
given stimulus or task (“spreading activation”), producing the 
apparent hyperactivity in distant sites that is often reported in 
patients with psychosis. Topologically, the connectome now 
appears to be “subtly randomized” as sparsity in the connec-
tivity is lost (as described by Rubinov and colleagues179). In the 
absence of homeostatic resetting, synaptic strengths of the 
 affected neuronal core become fully saturated, precluding the 
formation of new associations that are required for extinction. 
Thus, once fully formed in an individual with inherent defects 
in homeostatic plasticity, the extinction of delusions becomes 
highly unlikely. Furthermore, the lack of neural system stabil-
ization also reduces the connectome’s general readiness to pro-
cess further inputs, thus reducing the speed of signal process-
ing, expressed clinically as the negative symptom of 
psychomotor poverty. In addition, the suboptimal message-
passing that occurs in an overloaded connectome (Fig. 4) can 
result in temporal delays in communication among modular 
brain units. This in turn can affect the temporal segregation 
 required to separate self-generated from external mental con-
tent,180–182 resulting in an aberrant sense of self. Thus, self-
related disturbances and negative symptoms are more likely in 
those who have aberrations in neural system stabilization.

With the sustained and diffuse destabilization of the con-
nectome that affects its sparse connectivity, the need for alter-
nate homeostatic processes involving structural plasticity are 
triggered.162,183,184 Structural plasticity involves synaptic elimi-
nation and retraction of spines that aim to restore the sparse 
connectivity state that existed before the onset of psychosis. 
This process gradually eliminates excitatory dendritic syn-
apses, with consequent neuropil reduction107,185 and progres-
sive grey matter loss. Owing to the inherently higher activity 
levels and their propensity to be highly accessible to most of 
the aberrant neuronal ensembles, rich-club hubs of the 
 human connectome (anterior cingulate cortex, insula, lateral 
prefrontal cortex, superior temporal gyrus and hippocampal 
regions) are most likely to be affected by this global retuning 
process.78,81,82,186 With time, this leads to “de-escalation” of 
hubs and restoration of sparse connectivity, albeit at the cost 
of increased segregation of functional modules and pro-
longed transit time in the network (Fig. 5).

This structural homeostatic compensation eventually suc-
ceeds in abolishing the recurrent spreading of the avalanche 
of activity originating in anomalous neuronal ensembles. 
This comes at the cost of somewhat lower efficiency of infor-
mation transfer, which becomes apparent whenever the de-
mands on the system increase. Patients at this stage of illness 

exhibit a lower level of psychotic symptoms, but they con-
tinue to express negative symptoms (reduced speed of infor-
mation processing, avoidance of social demands). One of the 
unintended consequences of hub/rich-club damage is the 
emergence of peripheral hubs, often located in unimodal cor-
tices. These peripheral hubs, although they now have a 
higher degree of functional connectivity than other brain re-
gions, lack the richness of hierarchical structure possessed by 
conventional core hubs. As a result, the flexibility of resource 
allocation is reduced at a global level, resulting in a reduction 
of system-wide plasticity and producing inefficient informa-
tion transfer, especially when demands are placed on the net-
works. In addition, reduced overall connectivity increases the 
propensity of higher neural activity (Fig. 1), creating fertile 
soil for further relapses. Psychosis-inducing triggers continue 
to produce further episodes at this stage, although with re-
duced homeostatic reserve — both intrinsic and structural — 
even milder doses of inciting agents may now be sufficient to 
induce relapses.187,188 Furthermore, compensation through 
dendritic spine reduction reaches a critical point after re-
peated relapses with no further room for spine reduction, 
leading to a state of “homeostatic occlusion” (Fig. 6). In 
 people who reach this stage, treating psychotic episodes be-
comes more difficult, taking longer and requiring higher 
doses, and some episodes will remain treatment-resistant.

Many other agents that may worsen the outcome of estab-
lished illness can directly induce dendritic spine elimina-
tion.189 Drugs of abuse also alter the dynamics and micro-
structure of both dendrites and dendritic spines;190 chronic 
stress also promotes synaptic elimination.191 In addition, ac-
tivity dependence of structural synaptic plasticity means that 
at least some of synaptic elimination could be secondary to 
lack of environmental stimulation.192 When the first psychotic 
episode occurs at a very early age, accompanying develop-
mental processes synergistically hasten dendritic spine re-
duction, resulting in accelerated homeostatic occlusion and 
early emergence of treatment resistance.

Dopamine regulates the gain of N-methyl-d-aspartate 
(NMDA)–receptor-mediated Hebbian associative plasticity.193 
Antipsychotics, by blocking D2 receptors, may act directly at 
the synaptic milieu to inhibit the associative learning process. 
They also facilitate the intrinsic functional homeostatic plas-
ticity that counteracts the Hebbian potentiation, reducing the 
time taken for symptom resolution.194,195 In particular, typical 
neuroleptics result in the inhibition of long-term potentiation 
and spike-timing dependent plasticity.194 This effect rapidly 
reduces the runaway facilitation that occurs at the synaptic 
level during a psychotic episode, facilitating the resolution of 
the psychosis (early responders) and restoring the efficient 
sparse connectivity.196 Nevertheless, in patients with defec-
tive intrinsic homeostasis such rapid response may not occur; 
in addition, when response occurs eventually, discontinua-
tion or dose reduction may carry a higher risk of relapse. Fur-
ther, antipsychotics also increase oxidative stress, which may 
trigger or indirectly facilitate structural synaptic plasticity.197 
With long-term use, certain antipsychotics (especially atyp-
icals) may have a propensity to reduce synaptic elimination, 
halting or reducing the neuropil reduction that may occur in 
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Fig. 4: Stabilization shift in psychotic disorders. In those who have a predilection for aberrant functional plasticity, synaptic 
gains from associations accumulate over time, leading to runaway excitation in the neural network. The occurrence of this 
event may be brought forward by exposure to inducing agents, as indicated in Figure 3. In the absence of an intact neural sys-
tem stabilization process, this results in a hyperconnected state for resting-state brain networks, with inefficient over- 
recruitment of task-processing regions. Subtle information-processing deficits that accompanied the predilection for aberrant 
functional plasticity now become more pronounced; the step change coincides with the first psychotic episode. The neural sys-
tem stabilization mechanism now shifts from inefficient functional plasticity to a robust dependence on structural plasticity (i.e., 
spine reduction). fMRI = functional MRI.

Fig. 5: Hub de-escalation in psychotic disorders. (A) Rich-club hubs of the human connectome (anterior cingulate cortex, 
 insula, lateral prefrontal cortex, superior temporal gyrus and hippocampal regions) have inherently high activity levels and 
higher topological proximity to any given brain region. (B) As a result, the pathways to and from these nodes are most likely to 
be the sites of dendritic spine reduction occurring in response to anomalous hyperconnectivity. (C) With time, this leads to “de-
escalation” of hubs (red-dotted circles), increased demands on remaining hubs (overloading effect, shown with a red halo) and 
emergence of peripheral hubs (yellow nodes). While this helps with restoration of sparse connectivity, it comes at the cost of 
 increased segregation of functional modules (nodes with a thunderbolt sign less well connected to other hubs) and prolonged 
transit time in the network.  
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schizophrenia,198 and typical antipsychotics may alter synaptic 
proteins, facilitating dendritic spine regression and neuropil 
reduction.199 Critchlow and colleagues200 demonstrated a 59% 
increase in primary dendritic spine density in rat hippocam-
pal neurons upon clozapine administration, while haloperidol 
had an opposing effect (see also Bringas and colleagues201). 
This suggests that clozapine may have specific effects on den-
dritic spines that may help restore structural plasticity, even 
in later stages of treatment resistance.

Excessive anomalous associations due to abnormalities in 
timing-dependent plasticity may result in psychotic experi-
ences; if agents inducing such abnormalities are repeated fre-
quently or in occur massive doses, then homeostatic mech-
anisms may experience temporary overload. This leads to a 
psychotic episode that can resolve with or without treatment, 
if the process of system stabilization is intact. In individuals 
with aberrant functional plasticity, inefficient cerebral recruit-
ment and processing deficits occur, resulting in the clinical 
syndrome of psychotic disorders such as schizophrenia. In 
this state, hub de-escalation and suboptimal retuning of the 
global connectome provide fertile ground for relapses. With 
successive relapse, a state of homeostatic occlusion occurs, 
leading to a treatment-resistant profile.

Neural system stabilization, sex and 
developmental age

Brain development is characterized by critical time windows 
in which the system stability of the brain is notably affected. 

Such windows are characterized by an increase in structural 
homeostatic activity that helps to restore the stability. For 
 example, adolescence is associated with crucial changes in 
the profile of NMDA receptors, which mediate functional 
synaptic plasticity (a subunit switch from NR2B to 
NR2A)202,203 and the dopamine receptor D2, which affects 
 inhibitory plasticity.204 During this critical period, excitatory 
synapses are actively eliminated,204–206 increasing the inhibi-
tory tone required for balanced brain activity. I posit that the 
emergence of psychosis is more common during late adoles-
cence because excess demands are placed on structural plas-
ticity at this time. Furthermore, homeostatic plasticity is the 
major mechanism of experience-dependent shaping of the 
developing brain. Any perturbation in this system—such as 
the one proposed here as a mechanism for psychosis—is 
bound to have a developmental effect that can present itself 
even before the onset of psychosis (e.g., disrupted asymme-
try,207 folding defects208). In particular, invocation of struc-
tural homeostatic plasticity could be related to an increased 
vulnerability of oxidative stress, which plays a crucial role in 
synaptic elimination.209,210 This may explain why obstetric 
complications such as neonatal hypoxia and consequent 
 developmental defects are more likely to be seen in patients 
who later develop schizophrenia.211,212

Hebbian plasticity mechanisms appear to be modulated by 
sex-specific neurosteroids in animals.213,214 In particular, estra-
diol, allopregnanolone and related endogenous neuro-
steroids serve to reduce intrinsic neuronal excitability 
through various mechanisms.215 Provided that such 

Fig. 6: Saturation of system stabilization. Hub de-escalation results in a suboptimally retuned system that is prone to runaway 
excitation, even with milder doses of psychosis-inducing triggers. Recurrent relapses exhaust the structural plasticity through 
dendritic spine elimination, leading to a state of homeostatic occlusion. This is associated with a treatment-resistant state, in 
which interventions that act primarily by enhancing functional plasticity are no longer effective.
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 sex -specific mechanisms are preserved in people who later 
develop schizophrenia, the occurrence of the runaway excita-
tion necessary for persistent psychosis and subsequent at-
tempts contributing to grey matter loss must be less likely, 
taking longer to be established in women.216

Compatibility with emerging observations

Multiple lines of evidence support the various postulates that 
form the building blocks of inefficient neural system stabil-
ization. A large body of evidence emerging from transcranial 
magnetic stimulation studies support the aberrations in plas-
ticity mechanisms in schizophrenia.217–221 Graph-theory-based 
accounts using data from multiple neuroimaging modalities 
point to a subtle randomization of the topology of brain net-
works in schizophrenia despite the preservation of the sparse 
but efficient small-world structure of connectional architec-
ture;101,179,222,223 this effect is anticipated if the core hubs lose 
their prominence and peripheral hubs emerge in an attempt 
to restore the sparse connectivity.224

Further, excess microglial activity, which is suspected to 
contribute to grey matter reduction in schizophrenia,225 can 
also lead to homeostatic synaptic elimination.226

Genetic observations

Inefficient neural system stabilization, characterized by a tilt 
from functional homeostatic plasticity to structural plasticity, 
is compatible with many emerging observations that link 
inflammatory processes with psychosis. Genome-wide asso-
ciation studies now point to a dysregulation of synaptic 
glutamatergic function227 and inflammatory mediators in 
schizophrenia.228,229 In the major histocompatibility complex, 
the variations in the complement cascade appear to be the 
most prominent genetic abnormality associated with schizo-
phrenia.229 Complement cascade is dubbed the “masterful 
 homeostatic regulator” of synaptic plasticity.230 Various prod-
ucts of this cascade are involved in tagging the appropriate 
synapses to be eliminated during normal development.231 
Several other genetic loci implicated in psychotic disorders 
also point to mechanisms of homeostatic synaptic plasti-
city.232 In addition to this polygenic risk, the less common but 
more penetrant copy number variations converge specifically 
“onto a coherent biological pathway at the synapse, with a 
specific role in plasticity.”233 In addition, genetic animal models 
that mimic various well-validated aspects of the schizophre-
nia phenotype converge on aberrant functional plasticity.234 
Taken together, there is compelling evidence for the genetic 
basis of schizophrenia to converge on the regulation of gluta-
matergic synaptic plasticity.

γ-Aminobutyric acid and the glutamate system

A comprehensive review of postmortem studies suggested 
that the major contributor to grey matter volumetric loss in 
schizophrenia is synaptic regression involving glutamatergic 
excitatory synapses.110,235 On the other hand, functional defi-
cits related to reduced GAD67 enzyme levels, rather than 

 actual loss of parvalbumin-containing interneurons, are now 
well established in patients with schizophrenia.236 Deficiency 
in the GAD67 system does not appear to be a direct result of 
neurotransmitter dysfunction,237 but it may indicate the fail-
ure of a key functional homeostatic process that responds to 
excitatory synaptic activity;153,238–240 this weakening of inhibi-
tory plasticity and subsequent connectome instability may 
serve to tilt the balance in favour of excitatory synaptic elimi-
nation in schizophrenia.241 This is consistent with our pro-
posed model of inefficient neural system stabilization.

Glutamatergic concentration measured using magnetic 
resonance spectroscopy appears to be elevated during the 
early phase of illness but reduces during the course of ill-
ness, and this relates to grey matter loss at distal sites.75,242,243 
The hallmarks of excitotoxic cell damage due to excess glu-
tamate, if present, is yet to be demonstrated in schizophre-
nia,244 but postmortem studies point to reduced glutamater-
gic dendritic spines and reduced biological coordination 
between glutamatergic signalling and synaptic struc-
ture.245,246 The current model of inefficient system stabiliza-
tion predicts that in early stages, higher levels of glutamate 
signal can be found in the loci of hyperconnectivity and 
anomalously increased neural activity, whereas lower levels 
of glutamate signal should accompany grey matter loss in 
schizophrenia, especially in later stages of illness, with ex-
citatory synapses undergoing structural elimination. While 
several studies are in agreement,69,75,242,247,248 opposite results 
also exist.249 Cautious interpretation is required, because it is 
unclear how much of spectroscopic glutamate refers to syn-
aptic activity.

The proposed notion of inefficient neural system stabiliza-
tion in schizophrenia is in line with emerging literature on 
aberrant plasticity mechanisms, genetic observations about 
inflammation and aberrant glutamatergic signalling.

Compatibility with current theories

Dopamine occupies a central position in the current treat-
ments of psychosis; midbrain dopaminergic pathways play a 
central role in network-level disruptions in schizophrenia.250 
Dopaminergic receptors are concentrated on dendritic 
spines and play a key permissive role in modulating synap-
tic plasticity and associative learning.251 The hypothesis 
 expounded in this review draws from existing accounts of 
associative learning, and so is broadly consistent with the 
models based on deficiencies in reinforcement learning and 
prediction error.252–258 Invoking disrupted plasticity as an ex-
planation for psychotic disorders itself is not new. Stephan 
and colleagues posit that NMDA hypofunction is the key 
 aspect of the plasticity defect seen in schizophrenia.259 One of 
the central tenets of this postulate is the ketamine model of 
schizophrenia. Ketamine mimics many acute symptoms of a 
psychotic episode, but it does not reproduce the features seen 
in established schizophrenia.260,261 Goto and colleagues262 
highlighted the plasticity mechanisms of the prefrontal 
 cortex and how they could be disrupted in schizophrenia. 
Keshavan and colleagues263 assembled a large body of evi-
dence to argue that the positive symptoms of schizophrenia 
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can be explained by hyperplasticity and negative symptoms 
by hypoplasticity, either being a compensatory response to 
the other. More recently, Forsyth and Lewis264 posited that 
the consequences of impaired synaptic plasticity during 
 development explains the emergence of clinical symptoms 
of schizophrenia. System stabilization processes operating at 
the synaptic and macro-connectomic level are not invoked in 
the models proposed above.262–264

A recent proposition highlights the role of homeostatic 
compensations in the putative excitation–inhibition imbal-
ance that starts with primary glutamatergic abnormality in 
schizophrenia.265 In contrast, the current model takes an 
 agnostic view on the primacy of neurochemical abnormal-
ity. I propose that various disruptions in associative learn-
ing can invoke the earliest symptoms of psychosis, but that 
the core dysfunction in established schizophrenia lies in the 
homeostatic aspect of plasticity that is likely to involve pri-
marily NMDA, but can also occur as a result of disruptions 
in other endogenous systems, such as the endocannabinoid 
pathways. By placing the emphasis on the homeostatic 
 aspect of plasticity, the current hypothesis attempts to 
 explain the continuum and course of schizophrenia rather 
than the acute phase of symptom appearance (Fig. 7). I also 
provide a framework that incorporates the emerging litera-
ture on connectomics, plasticity deficits, neuroprogression and 
inflammation and addresses distinct aspects of population-
level variation in the course and outcome of primary psychotic 
disorders.

The role of the individual in neural system 
stabilization

Homeostatic processes operate at various levels to main-
tain the relative constancy of the regulated variables, and 
scale up from an intracellular to a societal milieu through 

hierarchical feedback processes.140 For example, intracellu-
lar sodium balance can be eventually traced up to the pre-
dominance of human settlements close to water sources. 
Claude Bernard, one of the earliest proponents of the idea 
of homeostasis, maintains that the objective of this regu-
lated constancy is to maintain the “harmonious whole.”266 
This whole is often considered to be the “free and individ-
ual self”139 when studying biological systems, but it could 
refer to any of the higher levels of a self-organizing entity. 
Another important distinction between conventional 
 homeostatic pathways and a self-organizing system is that 
an agent of control is not required to “sniff out” the pertur-
bations in a self-organizing system.141

Does this mean an individual cannot have wilful control 
over the process of system stabilization? On the contrary: 
observations from clinical practice suggest that individuals 
have an intended control over the course of psychotic disor-
ders. A strong sense of self,267 along with an internal locus 
of control of the illness,268 appear to be critical factors for 
 recovery in psychotic disorders.

Damasio and Damasio argue that the feed-forward path-
ways of homeostasis give rise to conscious feeling states, 
which serve as “informative regulatory interfaces.”269 This 
mental aspect is an evolutionary advance that turns the indi-
vidual organism into an agent of its own regulation. The “feel-
ing state” generated by the connectome overload is likely to 
drive an individual to exert agentic guidance on system 
 stabilization. Provided that the tools to correct (i.e., the 
physico-chemical apparatus for system stabilization) are 
 accessible,  individual efforts should hasten the restoration of 
the steady state. However, given the freedom of operation and 
societal influence, feeling-driven adjustments may not  always 
be chosen to restore the perturbed system to its optimal 
state.269 This imperfection introduces another layer of hetero-
geneity in the prognostic trajectory of psychotic disorders.270

Fig. 7: Neural system stabilization and grades of psychosis. The degree of impairment in the homeostatic process of topological 
neural system stabilization determines whether an episode of psychosis resolves fully, relapses repeatedly or fails to respond to 
currently prescribed interventions.
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What is the nature of the feeling state that results from 
connectome overload? To answer the question, one must 
consider (1) the informative utility of the feeling state (i.e., 
the feeling must signal an adjustment that the organism is 
required to make in order to restore the system) and (2) 
the regulatory value (i.e., the feeling must serve to reduce 
further exposure to the triggers that perturb the system). 
It is tempting to speculate that secondary (or phasic271) 
negative symptoms (e.g., the feeling that nothing is plea-
surable anymore; anhedonia)272 could signal the individ-
ual to reduce sensory, social and chemical stimuli that 
 increase the likelihood of hyperconnectivity and further 
connectome overload.

The neural system stabilization theory proposed here 
allows for conscious agentic guidance of an individual in 
homeostatic processes, and raises interesting prospects 
 regarding the wilful control of recovery in psychotic disor-
ders (see Appendix 1 on the issue of insight and neural sys-
tem stabilization, available at jpn.ca/180038-a1).

Predictions, limitations and further questions

Physiologic disruptions in neural processes related to 
learning based on temporal contingency are likely to be 
nonspecific to schizophrenia and will be shared not only 
by other psychotic disorders, but also by healthy people 
with psychosis-like experiences. But patients with schizo-
phrenia are more likely to have specific disruptions in the 
system stabilization mechanisms that favour structural 
over functional plasticity. This vulnerability, if present 
from early life, could increase the risk of structural neuro-
developmental aberrations, various forms of intellectual 
and learning deficits even in the absence of psychosis (e.g., 
in siblings, or in premorbid stages273). But after the onset of 
symptoms, more extensive structural changes would be 
limited to those with inefficient system stabilization. As a 
result, morphometric changes may not be directly related 
to genetic liability for disease expression. But because 
 tissue loss is related to neural plasticity, reversal of these 
structural deficits is possible.65 Identifying people at risk of 
more severe forms of psychosis and offering treatments 
that reduce or delay progressive synaptic changes at early 
stages may have a true disease-modifying effect. There are 
some promising venues in this respect.274–277 Established 
postonset grey matter loss is the sign of a “steady state,” 
albeit an imperfect one, that serves to induce further 
 relapses. Reversal of deficits may require some disruption 
of this suboptimal steady state to enable the introduction 
of alternate means of neural system stability. To make 
therapeutic progress in established cases, it would be im-
portant to know how to safely carry out such topological 
restoration. Emerging neuromodulation approaches pro-
vide some promising leads.219

Given the heterogeneity of the currently accepted con-
struct of schizophrenia, it is unlikely that any single theory 
could fit the multitude of observations pertaining to this 
disease. In particular, the notion of inefficient system stabil-
ization does not offer causal explanations; it merely offers a 

mechanistic framework in which the operations of several 
causal agents could converge. In line with many other pre-
vailing hypotheses, the current framework offers a better 
explanation for the course of positive symptoms; there is a 
greater degree of uncertainty surrounding the nature of re-
lapse and the resolution of negative symptoms and thought 
disorder in schizophrenia. Further, the inefficient system 
stabilization model is inadequate for explaining the hetero-
geneity in symptoms of schizophrenia. Finally, the pro-
posed theory does not provide a single index of a homeo-
statically regulated variable that can capture the inefficient 
system stabilization that can occur in all patients. Instead, it 
raises the suggestion that aberrations in various indicators 
representing the extant pathways of intrinsic plasticity and 
structural plasticity can be brought together to characterize 
a substantial number of patients with poor outcome.

Aberrations in homeostatic plasticity have been sus-
pected in many neuropsychiatric disorders (see Appendix 
1 on the issue of bipolar disorder and neural system stabil-
ization).155,232,262,278,279 Future studies aimed at discovering 
the aspects of this disruption that is specific to schizophre-
nia are required to fully understand the molecular path-
ways that can be targeted for treatment. If experimental 
models of disrupted homeostatic plasticity fail to mimic the 
true phenotype of schizophrenia despite the presence of 
conditions that disrupt associative plasticity, the theory 
proposed here could be refuted. To my knowledge, there is 
a striking lack of studies in patients who have recovered 
 after a single psychotic episode, as well as longitudinal 
studies on connectome topology. Such studies are essential 
to test the premises of the neural system stabilization 
 theory (Table 2; see Appendix 1 on the issue of insight and 
neural system stabilization).

Table 2: Experimental approaches to test the neural system 
stabilization theory of schizophrenia

Postulates Approaches to test

Shift from functional to structural 
plasticity induces dendritic spine 
reduction

Animal models of disrupted 
homeostatic plasticity, when 
subjected to repeated associative 
learning, would mimic the structural 
phenotype of schizophrenia

 Focal hyperconnectivity predates 
diffuse hypoconnectivity in 
psychotic disorders

Longitudinal imaging from 
unmedicated first episode of 
psychosis to the postpsychotic 
stage would show shifting patterns 
of connectivity in patients 
responding to treatment

Hub de-escalation occurs after first 
episode of psychosis

Patients with schizophrenia-like 
phenotype would show progressive 
reduction of hubness of core 
nodes, emergence of peripheral 
hubs and grey matter reduction in 
hub regions

Lag of neural system stabilization 
in patients with a single psychotic 
episode

Patients with single psychotic 
episodes with full recovery would 
lack postpsychotic morphological 
and connectomic changes

Occlusion of topological 
homeostasis in treatment-resistant 
subjects

Lack of learning-induced changes 
in network connectivity in patients 
with treatment resistance
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Conclusion

I speculate that psychosis, as seen in clinical practice, is not a 
disorder of any single neurotransmitter system or a particu-
lar brain network; instead, it is a disorder of cerebral acclima-
tization to new learning. An important aspect of this theory is 
that there is an intrinsic antipsychotic defence mechanism 
that promotes system stabilization in the human brain; this 
mechanism is built on the balancing act between neural activ-
ity and connectivity that is essential for learning statistical 
regularities in our immediate environment. Restoration of 
this intrinsic system stabilization can reverse many features 
of long-term psychotic illnesses. Critical timing of interven-
tions, combined with approaches that provoke and redirect 
the pathways of neural network stability, may be required to 
realize this goal.
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